
|
|
|
| |
(amb) -->ERROR!!! amb tree exhausted |
(amb #t #f) |
(if (amb #t #f)
1
(amb))
|
(define amb-fail '*)
(define initialize-amb-fail
(lambda ()
(set! amb-fail
(lambda ()
(error "amb tree exhausted")))))
(initialize-amb-fail)
l
|
(define-macro amb
(lambda alts...
`(let ((+prev-amb-fail amb-fail))
(call/cc
(lambda (+sk)
,@(map (lambda (alt)
`(call/cc
(lambda (+fk)
(set! amb-fail
(lambda ()
(set! amb-fail +prev-amb-fail)
(+fk 'fail)))
(+sk ,alt))))
alts...)
(+prev-amb-fail))))))
|
(amb 1 2 3 4 5 6 7 8 9 10) |
(define number-between
(lambda (lo hi)
(let loop ((i lo))
(if (> i hi) (amb)
(amb i (loop (+ i 1)))))))
|
(define assert
(lambda (pred)
(if (not pred) (amb))))
|
(define gen-prime
(lambda (hi)
(let ((i (number-between 2 hi)))
(assert (prime? i))
i)))
|
(amb) => 3 |
(amb) => 5 |
(bag-of (gen-prime 20)) |
(2 3 5 7 11 13 17 19) |
(define-macro bag-of
(lambda (e)
`(let ((+prev-amb-fail amb-fail)
(+results '()))
(if (call/cc
(lambda (+k)
(set! amb-fail (lambda () (+k #f)))
(let ((+v ,e))
(set! +results (cons +v +results))
(+k #t))))
(amb-fail))
(set! amb-fail +prev-amb-fail)
(reverse! +results))))
|
(define solve-kalotan-puzzle
(lambda ()
(let ((parent1 (amb 'm 'f))
(parent2 (amb 'm 'f))
(kibi (amb 'm 'f))
(kibi-self-desc (amb 'm 'f))
(kibi-lied? (amb #t #f)))
(assert
(distinct? (list parent1 parent2)))
(assert
(if (eqv? kibi 'm)
(not kibi-lied?)))
(assert
(if kibi-lied?
(xor
(and (eqv? kibi-self-desc 'm)
(eqv? kibi 'f))
(and (eqv? kibi-self-desc 'f)
(eqv? kibi 'm)))))
(assert
(if (not kibi-lied?)
(xor
(and (eqv? kibi-self-desc 'm)
(eqv? kibi 'm))
(and (eqv? kibi-self-desc 'f)
(eqv? kibi 'f)))))
(assert
(if (eqv? parent1 'm)
(and
(eqv? kibi-self-desc 'm)
(xor
(and (eqv? kibi 'f)
(eqv? kibi-lied? #f))
(and (eqv? kibi 'm)
(eqv? kibi-lied? #t))))))
(assert
(if (eqv? parent1 'f)
(and
(eqv? kibi 'f)
(eqv? kibi-lied? #t))))
(list parent1 parent2 kibi))))
|
(define choose-color
(lambda ()
(amb 'red 'yellow 'blue 'white)))
|
(list `belgium b (list f h l g )) |
(define color-europe
(lambda ()
;choose colors for each country
(let ((p (choose-color)) ;Portugal
(e (choose-color)) ;Spain
(f (choose-color)) ;France
(b (choose-color)) ;Belgium
(h (choose-color)) ;Holland
(g (choose-color)) ;Germany
(l (choose-color)) ;Luxemb
(i (choose-color)) ;Italy
(s (choose-color)) ;Switz
(a (choose-color)) ;Austria
)
;construct the adjacency list for
;each country: the 1st element is
;the name of the country; the 2nd
;element is its color; the 3rd
;element is the list of its
;neighbors' colors
(let ((portugal
(list 'portugal p
(list e)))
(spain
(list 'spain e
(list f p)))
(france
(list 'france f
(list e i s b g l)))
(belgium
(list 'belgium b
(list f h l g)))
(holland
(list 'holland h
(list b g)))
(germany
(list 'germany g
(list f a s h b l)))
(luxembourg
(list 'luxembourg l
(list f b g)))
(italy
(list 'italy i
(list f a s)))
(switzerland
(list 'switzerland s
(list f i a g)))
(austria
(list 'austria a
(list i s g))))
(let ((countries
(list portugal spain
france belgium
holland germany
luxembourg
italy switzerland
austria)))
;the color of a country
;should not be the color of
;any of its neighbors
(for-each
(lambda (c)
(assert
(not (memq (cadr c)
(caddr c)))))
countries)
;output the color
;assignment
(for-each
(lambda (c)
(display (car c))
(display " ")
(display (cadr c))
(newline))
countries))))))
|