C h a p t e r 1

INTRODUCTION

Computers play an increasingly larger role in everyday life. From the embedded

microprocessors found in virtually every electronic appliance, to the escalating

number of personal computers used for business, entertainment and education,

Nicholas Negroponte’s statement that “computing is not about computers …

it is about living”1 is becoming truer by the day. Now, with the recent explosive

growth of the Internet, all these computers are becoming interconnected in a

global communications network. Many view the Internet as a universal communications

medium that can replace telephone, television and radio. The potential is

there, but progress has been hampered by the open design of the network itself. It

is still too easy to intercept, monitor and forge messages on the Internet, and

people are reluctant to use the network for financially or legally sensitive data.

The problems faced by users of the Internet fall into two main categories: privacy

and authentication. Privacy involves transmitting messages that cannot be

altered or read en route, while authentication allows each party to a communication

to be sure of the identity of the other (i.e. messages can’t be forged). Cryptography

holds the promise of a solution to these problems. Cryptography is the science

of secret writing. It provides a means whereby two people (or their computers),

commonly designated Alice and Bob, can communicate openly in such a

way that a third party, usually named Oscar, is unable to determine or alter what

is being said. By assuring privacy, cryptography indirectly provides authentication

because only Alice and Bob know how to encrypt and decipher each other’s messages.
A form of cryptography known as public-key cryptography appears to be best

suited to fulfilling the requirements of the Internet. Each user of a public-key

cryptosystem holds a pair of related keys. Anything encoded with one key can

only be decoded by it’s counterpart. Each user keeps one key secret and publishes

the other. Thus other people can employ the user’s public key to send

messages that only the user can read, or the user can “sign” a message with her

private key to authenticate it – other people can apply the user’s public key to verify

that the message came from the user.

Crucial to the operation of a global public-key cryptosystem on the Internet is a

practical and reliable means of publishing the public keys, called a Public-Key Infrastructure

or PKI. There are as yet only a handful proposals for an Internet PKI,2

many of which are still in draft form, and no single one has yet to gain widespread

use on the network. Indeed, many feel that, for the near future, there will be several

PKI systems operating and inter-operating on the Internet.

This thesis presents a set of basic PKI characteristics that apply to any PKI

system, and uses these characteristics to describe Internet PKI proposals. It is

hoped that these characteristics will prove useful both as a guide to PKI designers

and as an aid to PKI implementers in deciding which PKI system best suits their

needs.

We begin in Chapter 2 with a short discussion of the basic elements of a PKI:

private- and public-key cryptosystems, digital signature systems and message

hashing algorithms. In Chapter 3 we describe PKIs in general, their requirements

and limitations, and we present the basic PKI characteristics. Chapter 4 discusses

the current operation of the Internet without a PKI through two examples: email

and FTP. We next turn to current and proposed Internet PKI systems. Chapter 5

deals with Pretty Good Privacy. Chapter 6 covers X.509-based proposals. Chapter

7 is devoted to the Secure DNS PKI. Chapter 8 discusses recent ideas for

credential- or attribute-based systems.
Originality of Work

Here is a breakdown of the sources for the material in this thesis. All work is

original except where indicated here and in the actual text. Any application of the

basic PKI characteristics to the various PKIs discussed is original. All of the “… in

Action” subsections are original.

The discussion of basic cryptography in Chapter 2 is distilled from [St95],

although all the figures are original. The discussion of the importance of

having separate signature and encryption keys is adopted from [FoBa].

Most of Chapter 3, especially the ten basic characteristics, is original. Most

of the italicized terms defined are common to the field, although the phrase

“CRL time-granularity problem” is original. Many of the definitions, as well

as figures 5, 6 and 7, are adapted from [FoBa].

Chapter 4 is original.

The description of PGP in Chapter 5 is derived from [Zimm]. The critique of

the PGP PKI is original.

Chapter 6’s discussion of the X.509 and PEM standards is derived from

[FoBa] and [RFC1422], including all the figures. The discussion of the implications

of object identifiers, and the description of figure 11, is original.

Chapter 7’s description of the Internet domain name system and its security

extensions is derived from the appropriate Internet RFC documents.

The description of SDSI in chapter 8 is derived from [SDSI]. The sections

following and including SDSI in Action are original.

Chapter 9 is original.
C h a p t e r 2

PKI CRYPTOGRAPHY BASICS

This chapter provides a cursory overview of the cryptographic techniques that

make up a PKI. We focus here on the general properties of these techniques, as

an in-depth discussion of each method’s various schemes is beyond the scope of

this thesis. For more rigorous discussion, refer to a recent book on cryptography,

such as [St95] or [Sc96].

Secret-Key Cryptography

Secret-key cryptography3 is the classical form of cryptography that has been

around since ancient times. With a secret-key cryptosystem, Alice and Bob share

a secret: the key used for encryption and decryption. This requires prior communication

between Alice and Bob over a secure channel, so that they may agree on

a key. There are a great many secret-key systems, the best-known probably being

the Data Encryption Standard (DES, and it’s newer counterpart Triple-DES)

[DES].

There exist systems for communicating securely over public networks using

only secret-key cryptography, most notably MIT’s Kerberos system ([RFC1510]).

However, these schemes do not scale well to large, inter-organizational populations,

and they also carry extra security procedures that public-key systems do not

need, such as storing the secret keys on a secure, central server. Still, as we shall

see below, secret-key systems have their place in a PKI.
Public-Key Cryptography

In contrast with secret-key cryptography, public-key cryptography is very new.

It was first conceived in 1976 by Diffie and Hellman ([DH76]), and in 1977 Rivest,

Shamir and Adleman invented the RSA Cryptosystem ([RSA78]), the first realization

of a public-key system. There have since been several proposals for publickey

schemes, including the ElGamal Cryptosystem ([El85]) and elliptic curve

cryptosystems ([Sa96]).

[image: image1.png].ig@ie'»q@ﬂ





Each public-key cryptosystem has its own technical nuances, however they all share the same basic property that given an encryption key it is computationally infeasible to determine the decryption key (and vice-versa). This property lets a user, Alice, publish her encryption key. Anyone can use that public key to encrypt a message that only Alice can decipher with her private key.

In practice, computing a public-key cipher takes much longer than encoding

the same message with a secret-key system.4 This has lead to the practice of encrypting

messages with a secret-key system such as DES, then encoding the secret

key itself with a public-key system such as RSA (see Figure 11). We say that

the public-key system “transports” the secret key. Since the secret key is usually

much shorter than the message, this technique results in significantly faster processing

than if public-key cryptography alone were used.
Thus each securely-transmitted message has two components: the message

proper (encoded with a secret-key system) and the key used to encode the message

(itself encoded using a public-key system). Reading the message is hence a

two step process: first decode the secret key, then decode the message. In this

thesis, when we say that a person used a public (or private) key to encrypt a message,

or that a message is encrypted, we are referring to this combined technique.

Digital Signatures

The very nature of public-key cryptography permits a form of message signing.

Suppose Alice publishes her decryption key and keeps her encryption key secret.

When Alice encrypts a message, anyone can decrypt it using her public decrypting

key and, in doing so, they can be sure that the message could only have been

encrypted by Alice, since she is the sole possessor of her encryption key. Alice

has effectively “signed” the message.

Some public-key cryptosystems, such as RSA, have the property that both the

public and private keys can be used for encryption and decryption. In other words,

one key pair can be used for both message encryption and digital signature. This

practice, however, creates a number of problems with respect to the management

of the key pair. For example, consider the archival requirements of the private key

under each circumstance.

For a key pair used for digital signatures, the private key should never be

backed up, and it should be destroyed at the end of its active life. If the private

key is ever disclosed it can be used to forge documents. Even if its value is discovered

long after its active life has ended, it can still be used to forge signatures

on ostensibly-old documents.

In contrast, with a key pair used for encryption the private key should be archived

for as long as possible, because if the private key is ever lost it would be
impossible to retrieve messages encrypted with its public counterpart. It is therefore

sensible to keep multiple copies of this private key. Since this contradicts the

archiving requirements of a signature private key, one is better off in keeping

separate key pairs for each function.

[FoBa] discusses these issues in greater depth. For our purposes, we will always

assume that the encrypting key pair is distinct from the signature key pair.

Hash Functions

Typically, to digitally sign a message, rather than encrypt the message using a publickey scheme, the message is hashed using a cryptographic hash function, and the hash is encrypted (see Figure 22). A cryptographic hash function maps an arbitrary-length message to a fixed number of bits. Hash functions have the

following properties:

[image: image2.png]&=





The first property in fact implies the second;5 we list both to better illustrate the

concept. Hash functions are also called message digest or fingerprint algorithms.

Some better-known examples are MD5 ([RFC1321]) and SHA-1 ([SHS]).

As we stated above, digitally signing a message using hashes is a two-step

process. The message is first hashed, then the hash result is encrypted using a

public-key scheme. Then the message is transmitted along with its encrypted

hash. To verify the signature, the recipient needs to hash the message himself,

then decrypt the transmitted hash and compare the pair of hash values. The signature

is valid if the two values match, otherwise the message was somehow altered,

perhaps maliciously, in transit.
[image: image3.png]essage,

essage,

@

®

®

Encrypied
Message

Fig

Signed
Message

“Signed and Encrypled
Message





Summary

Figure 33 summarizes the basic formats of messages when public-key cryptography

is used:

An encrypted message, in which a symmetric key encrypts the message

and a public key encrypts the symmetric key.

A signed message, in which the message is hashed and the hash is encrypted

with a public key.

A signed and encrypted message, in which the message is signed using

the private key of the sender, then the signed message is encrypted using

the public key of the recipient.
C h a p t e r 3

BASIC PUBLIC-KEY INFRASTRUCTURE

CHARACTERISTICS

In this chapter we provide a working definition of “public-key infrastructure” and

discuss the characteristics of PKIs in general. We propose ten basic characteristics

common to all PKIs. The concepts described here provide the basis for understanding

and evaluating public-key infrastructure systems, which are discussed

in subsequent chapters.

What is a Public-Key Infrastructure?

In its most simple form, a PKI is a system for publishing the public-key values

used in public-key cryptography. There are two basic operations common to all

PKIs:

Certification is the process of binding a public-key value to an individual,

organization or other entity, or even to some other piece of information,

such as a permission or credential.

Validation is the process of verifying that a certification is still valid.

How these two operations are implemented is the basic defining characteristic

of all PKIs. We now describe in general terms the various methods employed to

perform these operations, and discuss the various issues that result from their

use. As we proceed, we will point out the basic characteristics of PKIs. These are

summarized in Table 11 at the end of this chapter.

Certification

Certification is the fundamental function of all PKIs. It is the means by which

public-key values, and information pertaining to those values, are published. For
[image: image4.png]Subject dentiication
nformaon

g
public key

Ch ideriiication
information

@5,

A private key

Figuse 4 - A basic cemifate




our purposes, we define a certificate as the form in which a PKI communicates public key values or information about public keys, or both.

This is a very broad definition of a certificate. At its most basic, a certificate is

merely a public key value. In more traditional terms, a certificate is a collection of

information that has been digitally signed by its issuer (see Figure 44). Such certificates are distinguished by the kind of information they contain.
An identity certificate simply identifies an entity, called the certificate subject,

and lists the public-key value(s) for that entity.6 A credential certificate describes

non-entities, such as a permission or credential. This is discussed further below

under Authentication.

A certificate user is an entity who relies upon the information contained in a

certificate. The certificate user trusts the issuing authority to issue “true” certificates.

That is, certificates which truly identify the subject and its public key (in the

case of identity certificates), or which truly describe a subject’s credentials (in the

case of credential certificates). The certificate issuer is commonly called a certification

authority (CA).

To help illustrate these concepts, we present an example using identity certificates.

Imagine that Alice wishes to securely communicate with Bob using a public

key cryptosystem. Alice needs to know the value of Bob’s public encrypting key.

Without a PKI, Alice must have direct knowledge of that key, i.e. Bob must com-
municate it to her via a secure channel. If Alice also wishes to communicate with

Doug, she must also have direct knowledge of Doug’s public encrypting key.

With a PKI, Alice only needs to have direct knowledge of a CA’s public signing

key. The CA would issue an identity certificate for each of Bob’s and Doug’s public

encrypting keys. Then if Alice wishes to communicate with Bob or Doug, she

can use the appropriate certificate to obtain the correct public key value. In this

case, Alice is the certificate user while Bob and Doug are both the subjects of

different certificates.

The information contained in a certificate is a basic characteristic of different

PKIs. As well, the relationship between the CA, the certificate user and the certificate

subject forms another basic PKI characteristic. All three may be distinct entities,

such as in the above example, or any two (or all three) can be the same entity.

The trust relationships between the three also form a third basic PKI characteristic.

In the above example, Alice is required to trust the CA’s certificates. If Alice

and the CA are distinct entities, how Alice trusts the CA will define how much

confidence she has in using the CA’s certificates for secure communications.

CA Arrangements

It is obviously impractical to have a single CA act as the authority for the entire

world. Therefore, most PKIs permit CAs to certify other CAs. In effect one CA is

telling its users that they can trust what a second CA says in its certificates. Returning

to our example above, Alice, Bob and Doug would typically each be certified

by a different CA. For Alice to then communicate with Bob, she would either

need direct knowledge of Bob’s CA’s signature public key, or Alice’s CA could issue

a certificate for that key. Then Alice could securely obtain Bob’s public key

while only having direct knowledge of her CA’s key. In this case, the certificates

issued for Alice and Bob are called end-user certificates while the certificate issued

by Alice’s CA for Bob’s CA is called a CA-certificate.
[image: image5.png]ce ﬁ}
CAXs pube ey

Subject 1D o
Sth
Rt
1D info for CAX
Certificate 1

Certificate 2
Subject D nfo

i, =P

D info for CAY

Bobs 1D nfo
Bob's

sttty =<
D info for CAZ

Certificate 3

Figute - & cenifiation path from Alice (0 Bob




In general, there may be an arbitrary number of CAs on a path between Alice and Bob (see Figure 55). To obtain Bob’s public key, Alice would have to verify the certificate of each CA in turn until she obtained Bob’s certificate. This process is called certification path validation. The length of the certification path is the number of CAs between Alice and Bob, or the number of certificates

Alice needs to verify in obtaining Bob’s key. The path in Figure 55 is made

up of three certificates: two CA-certificates and one end-user certificate. Certificate

1 is a CA-certificate issued by CA X for CA Y. CA Y issued CA-certificate 2

for CA Z, which has issued an end-user certificate for Bob’s key (certificate 3).

When Alice validates the certification path, she starts with CA X’s public key,

which she uses to validate certificate 1. Then she uses the public key for CA Y

she obtained from certificate 1 to validate certificate 2, thus acquiring CA Z’s public

key, which she can then use to validate certificate 3 and securely obtain Bob’s

public key.

How the CAs of a PKI are arranged is a basic PKI characteristic. Some PKIs

use a general hierarchy, illustrated in Figure 66. In this picture, the circles represent

CAs and the rectangles represent end users. An arrow indicates that the
[image: image6.png]O-ca

0= Enduser





source has issued a certificate for the target. In a general hierarchy, each CA certifies

its parent and its children. Also shown in Figure 66 are some crosscertificates,

indicated by the dashed arrows, which are certificates that do not follow

the basic hierarchy.

Some PKIs use a variant of the general hierarchy known as a top-down hierarchy,

shown in Figure 77, in which CAs only certify their children and the toplevel

CA is the source of all certification paths.7 Still other PKIs have no structure

at all – in effect, each CA is its own root CA and has full authority over how its

trust is assigned. These unstructured PKIs can operate in many ways. For example,

a program called Pretty Good Privacy uses an unstructured PKI in which each

CA bases its trust on the certificates of other CAs. If enough of the other CAs issue

certificates that bind a particular name to a particular key, then the CA can

accept that binind itself with some confidence. This is called a web of trust. Other

unstructured PKIs operate differently.

The CA relationships of a PKI govern its scalability. For a PKI to operate globally,

its functions must scale up to billions of users while retaining its practicality:

certification paths must be easily discovered and should not grow too long. For
level CA (CA A in Figure 66). A large number of certification paths in a general

hierarchy pass through A. This forces the PKI’s users to trust A implicitly. If A’s

private key were ever compromised it could be used to forge messages between

entities which rely on a certification path that includes A. Since so many paths do

pass through A, it becomes a very tempting target for attacks.

Certification paths in a general hierarchy also run the risk of becoming too

long, resulting in problems similar to the web-of-trust. Cross-certification helps to

reduce path lengths, at the risk of complicating path discovery. For example, in

Figure 66 when user h is communicating with user j, should she take advantage

of the cross-certificate between F and J, making her certification path G-F-J-K? Or

should she follow the hierarchical path of G-F-B-A-I-J-K? It depends on how much

trust she places in the different CAs in both paths, and on whether she knows

about the cross-certification in the first place.

Entity Relationships

Two more basic characteristics stem from the relationships between a PKI’s

CAs, subjects and users. The first has to do with the kind of relationship that exists

between the three – whether, for example, the CAs are distinct from the subjects

and users or if users and subjects can also be CAs themselves. Also, when

these three entities are distinct, the question arises as to how well they know each

other and what minimum amount of familiarity is required for the PKI to operate.

For example, is it necessary that a subject’s CA also be the subject’s employer?

Or perhaps subjects and users have to know each other well enough to have at

least met face-to-face.

The second relationship-based characteristic is the amount of trust that has to

exist between the distinct entities of a PKI. Some PKIs require that users place, or

delegate, all their trust in a single CA (for example, the top-level CA of a top-down

hierarchy) while others allow users to decide which CAs to trust. Sometimes it is

the CAs who must place their trust in other CAs or in their own subjects. A few

PKIs allow their entities to refine the kind of trust they delegate. A CA could refine
its trust in another CA such that the second CA would only be trusted for certain

kinds of certifications. For example, the first CA could have a policy stating “I only

trust this other CA to issue certificates that relate an email address to a public-key

value” and this could be expressed in the PKI in a way that makes conformance

to the policy automatic.

When dealing with trust issues the subject of liability inevitably arises. Who

assumes responsibility for what can become very important when a PKI is used to

secure sensitive information. In some PKIs, trust relationships are explicit and

easy to audit, making it relatively simple to assign responsibility. Other PKIs have

few, if any, mechanisms for encapsulating trust, let alone how it gets delegated.

These PKIs make liability difficult to determine.

Trust issues are extremely complex and cannot be resolved by good PKI design

alone. Trust is rarely defined in absolute terms. A person usually trusts

somebody else for some things but not for others. No pre-defined model can hope

to encompass all of the legal and social ramifications of trust. A PKI is merely a

tool for expressing trust relationships. Any PKI that seeks to do more inevitably

suffers from a lack of flexibility.

Validation

The second basic PKI operation is certificate validation. The information in a

certificate can change over time. A certificate user needs to be sure that the certificate’s

data is true – we say that the user needs to validate the certificate. There

are two basic methods of certificate validation:

The user can ask the CA directly about a certificate’s validity every time it is

used. This is known as online validation.

The CA can include a validity period in the certificate – a pair of dates that

define a range during which the information in the certificate can be considered

as valid. This is known as offline validation.
A PKI can use either or both methods. How a certificate user validates certificates

is a basic PKI characteristic.

Closely related to the validation method is certificate revocation. Certificate

revocation is the process of letting users know when the information in a certificate

becomes unexpectedly invalid. This can occur when a subject’s private key

becomes compromised, or, more benignly, when a certificate’s identifying information

changes (e.g. the subject gets a new telephone number).

If a certificate is validated online with the CA every time it is used then the

revocation problem becomes trivial, as the CA can simply state that the certificate

is no longer valid. However, when validity periods are employed, the certificate

revocation method becomes critical (especially in the case of private-key compromise).

How a PKI revokes certificates is a basic PKI characteristic.

In the absence of online approaches, the most common revocation method

uses certificate revocation lists (CRLs). A CRL is a list of revoked certificates that

is signed and periodically issued by a CA. It is essential that the user check the

latest CRL during validation to make sure that a certificate she is about to use has

not been revoked.

One of the chief concerns with the CRL approach is what happens between

the time when a CA receives notification that a certificate should be revoked and

when the CA publishes its next CRL. Since the revoked certificate will only appear

on the next CRL, any user checking the current CRL will not know of its revocation

and will assume that the certificate is still valid. We call this the CRL timegranularity

problem.

Another concern is the size of the CRL. A CA can be expected to certify thousands,

or even hundreds of thousands, of subjects. While the rate of revocations

for a given population is generally unpredictable, the CRLs for such CAs can be

expected to grow very large. When a CRL is too large it can be difficult to retrieve

by users, whose access to the CA may have limited bandwidth. Also, since CRLs

are signed, their signatures need to be verified before the CRL can be used, and
the time required to verify the signature on a large CRL and process its entries

can become significant.

These problems have lead to several refinements of the CRL approach. One

is to issue separate CRLs for different revocation reasons and/or for different certificate

subjects. For example, the CA could issue one CRL for routine revocations

(e.g. a change in a certificate subject’s identifying information) and another CRL

for revocations due to a security compromise. Similarly, a CA could issue one

CRL for its end-user subjects and another for the other CAs it may certify. These

measures have the effect of partitioning a large CRL into pieces that can be selectively

digested. For example, a user might not be very worried about routine

revocations and so would only need to check the security-compromise CRL. Also,

when processing a certification path the user need only check the CA CRLs (until

he reaches the end of the path).

While these steps help reduce CRL sizes, they do little to alleviate the CRL

time-granularity problem. Another measure has been proposed to address that

problem: delta-CRLs. A delta-CRL is simply a (CA-signed) list of CRL changes

that have occurred since the last full CRL was issued. Delta-CRLs allow revocation

notifications to be issued more frequently, and so reduce the probability that a

revoked certificate will be falsely validated. Delta-CRLs also help with the CRL

size problem. A certificate validating system could start with a full CRL, and then

need only process delta-CRLs as they are issued, updating its own copy of the full

CRL. A complete discussion of CRL issues can be found in [FoBa].

Online revocation and validation methods are still very new. While it appears

that an online approach avoids CRL management problems, the bandwidth and

processing requirements of such approaches remain unclear.

Authentication

Authentication is the process of using a PKI. When a CA certifies an entity and

a user then validates that certification, the entity is said to have been authenti-
cated. The degree to which the user can trust the certificate’s information and its

validity is a measure of the strength of the authentication. For example, if you look

at Alice and see that her eyes are blue, then you have a very strong authentication

of the colour of Alice’s eyes (well, at least to the extent that you can trust your

senses). On the other hand, if someone who has never seen Alice tells you that

they have heard that Alice’s eyes are, say, “bluer than sunrise on Jupiter” then

you really have no knowledge of Alice’s eye colour at all, since this information

came to you very indirectly and since, for all anyone knows, Jovian sunrises may

in fact be red. This is a very weak authentication.

As we mentioned under Certification, a certificate can contain entity or nonentity

information. When a certificate identifies an entity, it is called an identity

certificate. Authenticating an identity certificate is called identity authentication.

Certificates that contain non-entity information, such as a permission or credential,

are called attribute certificates. In this thesis we will instead use the term

credential certificates to avoid confusion with ANSI draft standard X9.45, which

deals with attribute certificates in a specific way. Credential certificates identify

things such as permissions (e.g. “can access computer xyz”), credentials (e.g. “is

a certified stock broker”), or other attributes (e.g. “is VP Marketing for ABC Inc.”).

A credential certificate may or may not identify the entity to which the credential is

attached. We call authenticating a credential certificate credential authentication.

Whether a PKI uses identity or credential certificates, or both, is a basic PKI

characteristic.

Limitations of PKI Authentication

Whenever authentication is performed using the PKI, whether online or offline,

it is called in-band authentication. Authentication performed using more traditional

methods, such as over the telephone or physically meeting someone, is called

out-of-band authentication. The goal of every PKI is to minimize the need for outof-

band authentication, and its success in this endeavor is a basic PKI characteristic.
It is unlikely that out-of-band authentication can ever be completely eliminated.

At the very least, a person wishing to use a PKI needs to first have their identity

and/or credentials verified by their CA. This initial verification can not be performed

using the PKI, since there is no other CA to vouch for the person’s identity/

credentials. Thus the bootstrapping process requires out-of-band authentication.

Also, different PKIs require different degrees of out-of-band authentication as

identity and credential information changes over time and needs to be updated.

The extent to which out-of-band authentication is required in a PKI is partly a

result of how much the PKI’s designers want to provide irrefutability. A signature

made by Alice is said to be irrefutable if Alice can not, at a later date, deny that

she did in fact make the signature. If the PKI is to be used as the foundation of an

electronic replacement for paper-based signatures, then irrefutability is an important

consideration. In general, the more out-of-band contact Alice has with her

CA, the less she will be able to engage in such fraud.

This issue has legal and social, as well as technical, implications, and a detailed

discussion is beyond the scope of this thesis.9 While it does seem likely that

PKIs can provide a better authentication system than the non-cryptographic ones

which are currently used, many issues need to be resolved before that can happen.

For example, what does “better” really mean? Public-key cryptography and

PKIs provide an alternative method of authentication, but whether it is stronger or

merely more convenient remains to be seen.

The degree of irrefutability provided by a PKI is certainly a basic characteristic.

However, it depends on many non-technical factors such as the legal and social

framework in which the PKI operates. There are also many technical factors outside

a PKI’s realm of control that impact irrefutability, such as how entities manage

their private keys. For this thesis, we will concentrate on the technical aspects

of irrefutability that can be provided by a PKI, and will briefly mention the other

considerations only when they are influenced by a specific technical feature.
Anonymity

The degree of irrefutability accorded by a PKI brings up another issue: Anonymity,

another basic PKI characteristic. We define anonymity as the ability to use

the PKI while only revealing the information which is pertinent to the situation. An

irrefutable signature seems to imply that the signer should be readily identifiable.

Yet there are many situations where anonymity would be preferred, most notably

in the area of shopping. For example, imagine a PKI that is set up to identify people

by their name, address, phone number, place of work and job title. Such a PKI

would be perfectly suitable when its users are acting in the capacities of their jobs.

The CEO of a company would like to by identified as such when authorizing, say,

a merger or a stock split.

However, that same CEO might be reluctant to use this PKI to make routine

purchases, as her identifying information would be made available to whatever

merchant she dealt with, information that she might prefer to keep private and/or

that the merchant would like to use for marketing or perhaps even more nefarious

schemes.

Ideally, a PKI should provide both strong, irrefutable authentication and a high

degree of privacy through anonymity. Credential authentication holds the promise

of giving a PKI those traits. As we shall see, several new PKI proposals use credential

authentication to that end.

Summary

In this chapter we have described PKI operations and attributes in general

terms, and identified ten basic PKI characteristics, which are set out in the following

table. These characteristics will be used in the following chapters to describe

current and proposed PKI systems.
C h a p t e r 4

A WORLD WITHOUT PUBLIC-KEY

INFRASTRUCTURES

The Internet currently operates without the benefit of a public-key infrastructure.

In this chapter we describe the present state of affairs for two common uses

of the Internet that could be among the first to benefit from a PKI: Email exchange

and FTP (File Transfer Protocol) access. We will return to these examples in later

chapters to show how they can be enhanced by the various PKIs examined. The

reader is assumed to have a basic familiarity with the operation of the Internet,

email and FTP.

Insecure Email

People exchanging email over the Internet are exposed to two kinds of security

risks. They can neither protect their messages from being read (or intercepted

and even changed) by a third party, nor can they be assured that the person they

are communicating with is in fact who they believe it to be.

As email is forwarded through the network, it passes through various computers

such as routers and email servers. There is currently no mechanism that prevents

the administrators of these machines from reading, copying and even

modifying a message as it passes by. They can easily do so without being detected

by the sender and receiver of the email. The message can even be intercepted

and replied to, with the interceptor masquerading as the recipient. Only

careful examination of the email message’s headers can reveal this deception.

Furthermore, when Alice obtains Bob’s email address, she usually has very little

assurance as to it’s authenticity. She can be fairly certain that it is valid if she

obtained it directly from Bob, perhaps over the phone or if they exchanged busi-
ness cards. She may even know the address via some close, mutual friend.

These cases, however, are quite rare. Much of our knowledge about the origins of the Internet email addresses we use comes from the Internet itself, and as such is subject to the same security problems described above.
Once Alice has obtained what she believes to be Bob’s email address, she

can send a message to Bob as indicated by the white arrow in the figure. Once

again, Oscar is in a position to intercept the message. He may read it or modify it.

If Alice and Bob used only the Internet to communicate with each other, then neither

would be able to detect or prevent Oscar’s meddling.

Despite these problems, Internet email has become the single most popular

use of the network, with relatively little concern for security. This can be attributed

to the facts that most Internet email traffic is not of a sensitive nature10 and that

the sheer volume of email makes it costly to find those messages which may be

of interest. However, as the Internet becomes more mainstream the inadequacies

of the current email system are becoming more apparent. A secure system is re-
quired before people can use the network to exchange more sensitive information.

FTP and Access Control

Another common use of the Internet is to publish files via an FTP server or,

more recently, a World-Wide Web server. Here problems arise when one does

not want to make the files accessible to the entire Internet community. In general,

the problem is one of access control, where access to a resource (such as a file)

is restricted to a select group.

Currently such controls are provided by password-protecting the resource.

Even if we disregard the possibility of a password being read by a third party as it

is transmitted over the network, we still have problems administering a passwordbased

system. The password has to be communicated securely to each user. In

the current Internet this means using an out-of-band (non-Internet) medium. If the

password is ever changed, each user must again be securely contacted.

This situation also leads to users having to remember many passwords, at

most one for each resource they access. And, of course, we can not disregard the

fact that passwords are transmitted “in the clear” and may be copied en route.

Since resource access is usually performed interactively, it is more difficult for a

third party to intercept and modify messages on-the-fly as with email. However it

is not impossible, and there is still no way to prevent someone who knows the

password from accessing the resource.
C h a p t e r 5

PRETTY GOOD PRIVACY

Introduction

Pretty Good Privacy (PGP) is a public-key cryptography program created by

Phil Zimmermann ([Zimm]). It uses RSA and IDEA (a symmetric key cipher similar

to DES) to encrypt and/or sign messages, and was originally designed for use

with Internet email. PGP users each maintain their own list, called a keyring, of

the public keys of the people with whom they correspond. As a precaution against

malicious tampering, the keyring is signed by the user’s own private key, and so

when she adds a key to her keyring she is said to have signed the key.

PGP allows users to exchange keyrings. When Alice adds Bob’s key to her

keyring, she assigns his key one of four attributes:

Completely trusted – if any other key is signed by this key, then add the

new key to the keyring. In effect, Alice is saying she trusts Bob to vouch for

the validity of any key.

Marginally trusted – a key signed by this key must also be signed by one

(or more) other keys before it is added to the keyring. That is, Alice does

not trust Bob very much, and needs to have his claims about keys corroborated

by one or more others.

Untrusted – do not use this key in determining whether other keys can be

added to the keyring. Alice does not trust Bob to vouch for any keys at all.

Unknown – a level of trust can not be determined for this key. In practice,

this is the same as designating it as Untrusted.
These attributes allow Alice to assign a level of trust to Bob’s key. Alice can

tune PGP’s criteria for accepting a key. For example, she can tell PGP to accept a key if it has been signed by two completely trusted keys or at least three marginally trusted keys.
At this point, Bob’s keyring contains keys for Alice and Chris, and Chris’s keyring

contains keys for Bob and Elvis. Bob now decides to exchange keyrings with

Alice and Chris. This is illustrated by the solid black arrows in Figure 1010. Note

that all Internet communications in this example are via email. Bob first contacts

Chris and they exchange keyrings. Since Bob and Chris have both signed their
keyrings, and since they both know each other’s public key, this exchange can

occur securely over the Internet.

Since Bob does not have Alice’s public key, he can’t obtain her keyring, but he

can send her his keyring securely since he signs it and Alice knows his public key.

In this way, Alice obtains the keys for Chris and Elvis.

The limitations of PGP’s web of trust model now become clear. Alice can use

Chris’s key to communicate securely with Chris (white arrow in Figure 1010), and

can be reasonably assured of doing so since Bob obtained Chris’s key directly

before giving it to Alice. However, when Alice emails Elvis (thick gray arrow) she is

in fact relying on the word of someone she never met (Chris) to tell her the key of

someone else she never met (Elvis). If Alice had met Chris, perhaps she would

not place that much trust in him. Even in that case, because she trusts Bob she

winds up trusting Chris. Alice has no way of knowing which keys came from Chris

unless Bob tells her explicitly.

In the end, if Alice trusts any one person in the web she must trust the entire

web. And even if Alice finds that acceptable she is still vulnerable. Perhaps the

Elvis that Chris met was in fact an Elvis impersonator. If Chris is fooled, then everyone

who relied on Chris to obtain Elvis’s key is also fooled.

The Pretty Good Privacy PKI

As users trade keyrings, they build up a web of trust. In many ways, this is the

simplest form of PKI. Each user is, in effect, her own root CA with full authority

over how she assigns her trust. This simplicity has allowed PGP to gain relatively

widespread acceptance on the Internet compared to other PKIs. However, where

electronic commerce and other applications that require strong authentication are

concerned, the PGP PKI falls short.

A PGP certificate is not extensible and contains only an email address, a public-

key value and a degree-of-trust attribute. Since an email address is by no

means an accurate method of identifying someone, PGP can not provide strong
authentication of a person’s identity. The certificate’s lack of extensibility prevents

PGP from being used for applications beyond casual email communication. For

example, a bank cannot create a PGP bank account certificate for Bob’s public

key. Even if such a certificate were possible, PGP does not allow a user’s trust to

be delegated in a refined fashion. A user signing Bob’s bank’s key has no way to

say “this is Bob’s bank’s key,” let alone something like “I trust Bob’s bank only for

Bob’s financial information.”

PGP does not have a coherent method for validating and revoking certificates.

Both functions are performed essentially by word-of-mouth. In general, Alice will

learn of Bob’s public key via the web of trust. She has no way of being sure that

the information she receives is correct, or if it has been maliciously tampered with

or even forged.

If Alice is sending an encrypted message to Bob and she wants to be absolutely

sure that she is using Bob’s current public key then she must communicate

with Bob via some out-of-band means (e.g. a telephone call) prior to sending her

message. She must do this for each message she wants to be absolutely sure of

encrypting properly. Conversely, if Bob wants to be sure that Alice knows that he

has changed his public key, he must tell her directly, also via some out-of-band

method. He can’t just send Alice a message, signed with his old key, telling her

the value of the new key. If the old key was compromised, such a message

should not be trusted. And since Alice has no way of knowing if Bob’s key was

compromised or not, she should never trust such a message. Bob could use the

old key to securely inform Alice of the key’s compromise (once Alice knows of the

compromise, she simply stops trusting the old key) but he can not then use the

old key to convey the value of the new key, and so must send the new key to Alice directly. This need for direct, out-of-band communication in order to obtain

strong authentication greatly hampers the use of PGP for anything more than

casual email communication.

PGP’s use of email addresses as its sole means of identifying subjects also

prevents its users from having any degree of anonymity. A subject could use a

“false” email address, one which gives no indication of the true identity of the person behind it. However this would destroy any chance for any reliable authentication beyond the online persona presented by the email address.

The PGP PKI is simple and has gained widespread acceptance, but it is unsuitable for most applications beyond casual communication. Table 22 summarizes the PGP PKI in terms of the basic PKI characteristics.
C h a p t e r 6

X.509

Introduction

X.509 is the authentication framework designed to support X.500 directory

services. Both X.509 and X.500 are part of the X series of international standards

proposed by the ISO and ITU. The X.500 standard is designed to provide directory

services on large computer networks. X.509 provides a PKI framework for

authenticating X.500 services.

The first version of X.509 appeared in 1988, making it the oldest proposal for a

worldwide PKI. This, coupled with its ISO/ITU origin, has made X.509 the most

widely adapted PKI. There are at least a dozen companies worldwide that produce

X.509-based products, and that number is growing. Visa and MasterCard

have adapted X.509 as the basis for their Secure Electronic Transaction standard

([SET]). Netscape’s famous World Wide Web software also uses X.509. And

there are numerous X.509-based products available from companies such as Entrust

and TimeStep that support corporate “intranets.” Efforts are currently underway

to design an X.509-based PKI that will support a global network such as the

Internet. Along with PGP, X.509 is the only PKI system that has yet to be put into

practical use.

Version 3 of X.509 is currently in the final stages of adoption by the ISO and

ITU. X.509v3, as it’s called, greatly extends the functionality of the X.509 standard.

Most products available today use version 1 or 2 of X.509, with only a few

working systems based on version 3. The SET protocol is based on version 3, as

are most of the proposals for a global X.509 PKI.
In this chapter we will describe all versions of the X.509 standard, highlighting

its general strengths and weaknesses. We will then describe two X.509-based

Internet PKI proposals: the failed PEM and the draft PKIX standards.

The X.509 Standard

X.500

A full understanding of X.509 PKIs requires some basic knowledge of the

X.500 directory that X.509 was originally designed for. The X.500 directory is very

similar to a telephone directory where, given a person’s name, one can find auxiliary information about that person. However, X.500 provides more than just a name, address and phone number. An entry in an X.500 directory can contain a host of attributes, such as the name of the organization the person works for, her job title and her email address, to name a few. An X.500 directory entry can represent any real-world entity, not just people but also computers, printers, companies, governments, and nations. The entry can also contain the certificate specifying the entity’s public key.
To support looking up entries in the directory, each entry is assigned a globally

unique name, called a distinguished name or DN. To help ensure their uniqueness, these names are assigned in a very specific fashion. The X.500 directory is arranged in a hierarchical fashion, call the Directory Information Tree or DIT (see Figure 1111).

Each node, or vertex, in the tree has one parent (except the root vertex) and

any number of children. Each vertex, except the root, is assigned a relative distinguished name, or RDN, that is unique amongst all the vertex’s siblings. The RDNs of each of the vertex’s ancestors are concatenated with the vertex’s own RDN to form the entry’s DN. Figure 1111 illustrates this process. Under the root vertex there is an entry for each country in the world. These entries are assigned an RDN that is the country’s unique two-letter code assigned to it by the ISO. Beneath each country’s vertex are entries for all of the country’s organizations, such as it’s government, its states or provinces, and federally-chartered companies.

Each of these is assigned a unique RDN that is the name of the organization. Finally, each organization creates entries for all of its employees, and for other enti-ties the organization might control. Each of these is also assigned a unique RDN.

In our example, Mr. Louis Riel works for Bombardier, a Canadian company. Bombardier assigns an RDN to Mr. Riel that is simply his name (specified as his

“common name,” abbreviated as CN in the figure). Bombardier was itself assigned an RDN, “Organization=Bombardier” by Canada, designating it as the organization named Bombardier, and Canada’s RDN is it’s two-letter country code, “Country=CA.” Mr. Riel’s DN is thus the concatenation of these RDNs, starting from the root: Country=CA, Organization=Bombardier, CommonName=Louis Riel.

