Network Working Group                                         R. Housley

Request for Comments: 2459                                        SPYRUS

Category: Standards Track                                        W. Ford

                                                                VeriSign

                                                                 W. Polk

                                                                    NIST

                                                                 D. Solo

                                                                Citicorp

                                                            January 1999

 

 

                Internet X.509 Public Key Infrastructure

                      Certificate and CRL Profile

 

Status of this Memo

 

   This document specifies an Internet standards track protocol for the

   Internet community, and requests discussion and suggestions for

   improvements.  Please refer to the current edition of the "Internet

   Official Protocol Standards" (STD 1) for the standardization state

   and status of this protocol.  Distribution of this memo is unlimited.

 

Copyright Notice

 

   Copyright (C) The Internet Society (1999).  All Rights Reserved.

 

Abstract

 

   This memo profiles the X.509 v3 certificate and X.509 v2 CRL for use

   in the Internet.  An overview of the approach and model are provided

   as an introduction.  The X.509 v3 certificate format is described in

   detail, with additional information regarding the format and

   semantics of Internet name forms (e.g., IP addresses).  Standard

   certificate extensions are described and one new Internet-specific

   extension is defined.  A required set of certificate extensions is

   specified.  The X.509 v2 CRL format is described and a required

   extension set is defined as well.  An algorithm for X.509 certificate

   path validation is described. Supplemental information is provided

   describing the format of public keys and digital signatures in X.509

   certificates for common Internet public key encryption algorithms

   (i.e., RSA, DSA, and Diffie-Hellman).  ASN.1 modules and examples are

   provided in the appendices.

 

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

   document are to be interpreted as described in RFC 2119.

 

 

 

 

 

Housley, et. al.            Standards Track                     [Page 1]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   Please send comments on this document to the ietf-pkix@imc.org mail

   list.

 

 

 

                           TTTTaaaabbbblllleeee ooooffff CCCCoooonnnntttteeeennnnttttssss

 

 

 

   1  Introduction ................................................    5

   2  Requirements and Assumptions ................................    6

   2.1  Communication and Topology ................................    6

   2.2  Acceptability Criteria ....................................    7

   2.3  User Expectations .........................................    7

   2.4  Administrator Expectations ................................    7

   3  Overview of Approach ........................................    7

   3.1  X.509 Version 3 Certificate ...............................    9

   3.2  Certification Paths and Trust .............................   10

   3.3  Revocation ................................................   12

   3.4  Operational Protocols .....................................   13

   3.5  Management Protocols ......................................   13

   4  Certificate and Certificate Extensions Profile ..............   15

   4.1  Basic Certificate Fields ..................................   15

   4.1.1  Certificate Fields ......................................   16

   4.1.1.1  tbsCertificate ........................................   16

   4.1.1.2  signatureAlgorithm ....................................   16

   4.1.1.3  signatureValue ........................................   17

   4.1.2  TBSCertificate ..........................................   17

   4.1.2.1  Version ...............................................   17

   4.1.2.2  Serial number .........................................   18

   4.1.2.3  Signature .............................................   18

   4.1.2.4  Issuer ................................................   18

   4.1.2.5  Validity ..............................................   21

   4.1.2.5.1  UTCTime .............................................   22

   4.1.2.5.2  GeneralizedTime .....................................   22

   4.1.2.6  Subject ...............................................   22

   4.1.2.7  Subject Public Key Info ...............................   23

   4.1.2.8  Unique Identifiers ....................................   24

   4.1.2.9 Extensions .............................................   24

   4.2  Certificate Extensions ....................................   24

   4.2.1  Standard Extensions .....................................   25

   4.2.1.1  Authority Key Identifier ..............................   25

   4.2.1.2  Subject Key Identifier ................................   26

   4.2.1.3  Key Usage .............................................   27

   4.2.1.4  Private Key Usage Period ..............................   29

   4.2.1.5  Certificate Policies ..................................   29

   4.2.1.6  Policy Mappings .......................................   31

   4.2.1.7  Subject Alternative Name ..............................   32

 

 

 

Housley, et. al.            Standards Track                     [Page 2]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   4.2.1.8  Issuer Alternative Name ...............................   34

   4.2.1.9  Subject Directory Attributes ..........................   34

   4.2.1.10  Basic Constraints ....................................   35

   4.2.1.11  Name Constraints .....................................   35

   4.2.1.12  Policy Constraints ...................................   37

   4.2.1.13  Extended key usage field .............................   38

   4.2.1.14  CRL Distribution Points ..............................   39

   4.2.2  Private Internet Extensions .............................   40

   4.2.2.1  Authority Information Access ..........................   41

   5  CRL and CRL Extensions Profile ..............................   42

   5.1  CRL Fields ................................................   43

   5.1.1  CertificateList Fields ..................................   43

   5.1.1.1  tbsCertList ...........................................   44

   5.1.1.2  signatureAlgorithm ....................................   44

   5.1.1.3  signatureValue ........................................   44

   5.1.2  Certificate List "To Be Signed" .........................   44

   5.1.2.1  Version ...............................................   45

   5.1.2.2  Signature .............................................   45

   5.1.2.3  Issuer Name ...........................................   45

   5.1.2.4  This Update ...........................................   45

   5.1.2.5  Next Update ...........................................   45

   5.1.2.6  Revoked Certificates ..................................   46

   5.1.2.7  Extensions ............................................   46

   5.2  CRL Extensions ............................................   46

   5.2.1  Authority Key Identifier ................................   47

   5.2.2  Issuer Alternative Name .................................   47

   5.2.3  CRL Number ..............................................   47

   5.2.4  Delta CRL Indicator .....................................   48

   5.2.5  Issuing Distribution Point ..............................   48

   5.3  CRL Entry Extensions ......................................   49

   5.3.1  Reason Code .............................................   50

   5.3.2  Hold Instruction Code ...................................   50

   5.3.3  Invalidity Date .........................................   51

   5.3.4  Certificate Issuer ......................................   51

   6  Certificate Path Validation .................................   52

   6.1  Basic Path Validation .....................................   52

   6.2  Extending Path Validation .................................   56

   7  Algorithm Support ...........................................   57

   7.1  One-way Hash Functions ....................................   57

   7.1.1  MD2 One-way Hash Function ...............................   57

   7.1.2  MD5 One-way Hash Function ...............................   58

   7.1.3  SHA-1 One-way Hash Function .............................   58

   7.2  Signature Algorithms ......................................   58

   7.2.1  RSA Signature Algorithm .................................   59

   7.2.2  DSA Signature Algorithm .................................   60

   7.3  Subject Public Key Algorithms .............................   60

   7.3.1  RSA Keys ................................................   61

   7.3.2  Diffie-Hellman Key Exchange Key .........................   61

 

 

 

Housley, et. al.            Standards Track                     [Page 3]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   7.3.3  DSA Signature Keys ......................................   63

   8  References ..................................................   64

   9  Intellectual Property Rights ................................   66

   10  Security Considerations ....................................   67

   Appendix A.  ASN.1 Structures and OIDs .........................   70

   A.1 Explicitly Tagged Module, 1988 Syntax ......................   70

   A.2 Implicitly Tagged Module, 1988 Syntax ......................   84

   Appendix B.  1993 ASN.1 Structures and OIDs ....................   91

   B.1 Explicitly Tagged Module, 1993 Syntax ......................   91

   B.2 Implicitly Tagged Module, 1993 Syntax ......................  108

   Appendix C.  ASN.1 Notes .......................................  116

   Appendix D.  Examples ..........................................  117

   D.1  Certificate ...............................................  117

   D.2  Certificate ...............................................  120

   D.3  End-Entity Certificate Using RSA ..........................  123

   D.4  Certificate Revocation List ...............................  126

   Appendix E.  Authors' Addresses ................................  128

   Appendix F.  Full Copyright Statement ..........................  129

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Housley, et. al.            Standards Track                     [Page 4]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

1  Introduction

 

   This specification is one part of a family of standards for the X.509

   Public Key Infrastructure (PKI) for the Internet.  This specification

   is a standalone document; implementations of this standard may

   proceed independent from the other parts.

 

   This specification profiles the format and semantics of certificates

   and certificate revocation lists for the Internet PKI.  Procedures

   are described for processing of certification paths in the Internet

   environment.  Encoding rules are provided for popular cryptographic

   algorithms.  Finally, ASN.1 modules are provided in the appendices

   for all data structures defined or referenced.

 

   The specification describes the requirements which inspire the

   creation of this document and the assumptions which affect its scope

   in Section 2.  Section 3 presents an architectural model and

   describes its relationship to previous IETF and ISO/IEC/ITU

   standards.  In particular, this document's relationship with the IETF

   PEM specifications and the ISO/IEC/ITU X.509 documents are described.

 

   The specification profiles the X.509 version 3 certificate in Section

   4, and the X.509 version 2 certificate revocation list (CRL) in

   Section 5. The profiles include the identification of ISO/IEC/ITU and

   ANSI extensions which may be useful in the Internet PKI. The profiles

   are presented in the 1988 Abstract Syntax Notation One (ASN.1) rather

   than the 1994 syntax used in the ISO/IEC/ITU standards.

 

   This specification also includes path validation procedures in

   Section 6.  These procedures are based upon the ISO/IEC/ITU

   definition, but the presentation assumes one or more self-signed

   trusted CA certificates.  Implementations are required to derive the

   same results but are not required to use the specified procedures.

 

   Section 7 of the specification describes procedures for

   identification and encoding of public key materials and digital

   signatures.  Implementations are not required to use any particular

   cryptographic algorithms.  However, conforming implementations which

   use the identified algorithms are required to identify and encode the

   public key materials and digital signatures as described.

 

   Finally, four appendices are provided to aid implementers.  Appendix

   A contains all ASN.1 structures defined or referenced within this

   specification.  As above, the material is presented in the 1988

   Abstract Syntax Notation One (ASN.1) rather than the 1994 syntax.

   Appendix B contains the same information in the 1994 ASN.1 notation

   as a service to implementers using updated toolsets.  However,

   Appendix A takes precedence in case of conflict.  Appendix C contains

 

 

 

Housley, et. al.            Standards Track                     [Page 5]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   notes on less familiar features of the ASN.1 notation used within

   this specification.  Appendix D contains examples of a conforming

   certificate and a conforming CRL.

 

2  Requirements and Assumptions

 

   The goal of this specification is to develop a profile to facilitate

   the use of X.509 certificates within Internet applications for those

   communities wishing to make use of X.509 technology. Such

   applications may include WWW, electronic mail, user authentication,

   and IPsec.  In order to relieve some of the obstacles to using X.509

   certificates, this document defines a profile to promote the

   development of certificate management systems; development of

   application tools; and interoperability determined by policy.

 

   Some communities will need to supplement, or possibly replace, this

   profile in order to meet the requirements of specialized application

   domains or environments with additional authorization, assurance, or

   operational requirements.  However, for basic applications, common

   representations of frequently used attributes are defined so that

   application developers can obtain necessary information without

   regard to the issuer of a particular certificate or certificate

   revocation list (CRL).

 

   A certificate user should review the certificate policy generated by

   the certification authority (CA) before relying on the authentication

   or non-repudiation services associated with the public key in a

   particular certificate.  To this end, this standard does not

   prescribe legally binding rules or duties.

 

   As supplemental authorization and attribute management tools emerge,

   such as attribute certificates, it may be appropriate to limit the

   authenticated attributes that are included in a certificate.  These

   other management tools may provide more appropriate methods of

   conveying many authenticated attributes.

 

2.1  Communication and Topology

 

   The users of certificates will operate in a wide range of

   environments with respect to their communication topology, especially

   users of secure electronic mail.  This profile supports users without

   high bandwidth, real-time IP connectivity, or high connection

   availability.  In addition, the profile allows for the presence of

   firewall or other filtered communication.

 

 

 

 

 

 

 

Housley, et. al.            Standards Track                     [Page 6]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   This profile does not assume the deployment of an X.500 Directory

   system.  The profile does not prohibit the use of an X.500 Directory,

   but other means of distributing certificates and certificate

   revocation lists (CRLs) may be used.

 

2.2  Acceptability Criteria

 

   The goal of the Internet Public Key Infrastructure (PKI) is to meet

   the needs of deterministic, automated identification, authentication,

   access control, and authorization functions. Support for these

   services determines the attributes contained in the certificate as

   well as the ancillary control information in the certificate such as

   policy data and certification path constraints.

 

2.3  User Expectations

 

   Users of the Internet PKI are people and processes who use client

   software and are the subjects named in certificates.  These uses

   include readers and writers of electronic mail, the clients for WWW

   browsers, WWW servers, and the key manager for IPsec within a router.

   This profile recognizes the limitations of the platforms these users

   employ and the limitations in sophistication and attentiveness of the

   users themselves.  This manifests itself in minimal user

   configuration responsibility (e.g., trusted CA keys, rules), explicit

   platform usage constraints within the certificate, certification path

   constraints which shield the user from many malicious actions, and

   applications which sensibly automate validation functions.

 

2.4  Administrator Expectations

 

   As with user expectations, the Internet PKI profile is structured to

   support the individuals who generally operate CAs.  Providing

   administrators with unbounded choices increases the chances that a

   subtle CA administrator mistake will result in broad compromise.

   Also, unbounded choices greatly complicate the software that shall

   process and validate the certificates created by the CA.

 

3  Overview of Approach

 

   Following is a simplified view of the architectural model assumed by

   the PKIX specifications.

 

 

 

 

 

 

 

 

 

 

Housley, et. al.            Standards Track                     [Page 7]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

       +---+

       | C |                       +------------+

       | e | <-------------------->| End entity |

       | r |       Operational     +------------+

       | t |       transactions          ^

       |   |      and management         |  Management

       | / |       transactions          |  transactions

       |   |                             |                PKI users

       | C |                             v

       | R |       -------------------+--+-----------+----------------

       | L |                          ^              ^

       |   |                          |              |  PKI management

       |   |                          v              |      entities

       | R |                       +------+          |

       | e | <---------------------| RA   | <---+    |

       | p |  Publish certificate  +------+     |    |

       | o |                                    |    |

       | s |                                    |    |

       | I |                                    v    v

       | t |                                +------------+

       | o | <------------------------------|     CA     |

       | r |   Publish certificate          +------------+

       | y |   Publish CRL                         ^

       |   |                                       |

       +---+                        Management     |

                                    transactions   |

                                                   v

                                               +------+

                                               |  CA  |

                                               +------+

 

                          Figure 1 - PKI Entities

 

   The components in this model are:

 

   end entity:  user of PKI certificates and/or end user system that

                is the subject of a certificate;

   CA:          certification authority;

   RA:          registration authority, i.e., an optional system to

                which a CA delegates certain management functions;

   repository:  a system or collection of distributed systems that

                store certificates and CRLs and serves as a means of

                distributing these certificates and CRLs to end

                entities.

 

 

 

 

 

 

 

Housley, et. al.            Standards Track                     [Page 8]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

3.1  X.509 Version 3 Certificate

 

   Users of a public key shall be confident that the associated private

   key is owned by the correct remote subject (person or system) with

   which an encryption or digital signature mechanism will be used.

   This confidence is obtained through the use of public key

   certificates, which are data structures that bind public key values

   to subjects.  The binding is asserted by having a trusted CA

   digitally sign each certificate. The CA may base this assertion upon

   technical means (a.k.a., proof of posession through a challenge-

   response protocol), presentation of the private key, or on an

   assertion by the subject.  A certificate has a limited valid lifetime

   which is indicated in its signed contents.  Because a certificate's

   signature and timeliness can be independently checked by a

   certificate-using client, certificates can be distributed via

   untrusted communications and server systems, and can be cached in

   unsecured storage in certificate-using systems.

 

   ITU-T X.509 (formerly CCITT X.509) or ISO/IEC/ITU 9594-8, which was

   first published in 1988 as part of the X.500 Directory

   recommendations, defines a standard certificate format [X.509]. The

   certificate format in the 1988 standard is called the version 1 (v1)

   format.  When X.500 was revised in 1993, two more fields were added,

   resulting in the version 2 (v2) format. These two fields may be used

   to support directory access control.

 

   The Internet Privacy Enhanced Mail (PEM) RFCs, published in 1993,

   include specifications for a public key infrastructure based on X.509

   v1 certificates [RFC 1422].  The experience gained in attempts to

   deploy RFC 1422 made it clear that the v1 and v2 certificate formats

   are deficient in several respects.  Most importantly, more fields

   were needed to carry information which PEM design and implementation

   experience has proven necessary.  In response to these new

   requirements, ISO/IEC/ITU and ANSI X9 developed the X.509 version 3

   (v3) certificate format.  The v3 format extends the v2 format by

   adding provision for additional extension fields.  Particular

   extension field types may be specified in standards or may be defined

   and registered by any organization or community. In June 1996,

   standardization of the basic v3 format was completed [X.509].

 

   ISO/IEC/ITU and ANSI X9 have also developed standard extensions for

   use in the v3 extensions field [X.509][X9.55].  These extensions can

   convey such data as additional subject identification information,

   key attribute information, policy information, and certification path

   constraints.

 

 

 

 

 

 

Housley, et. al.            Standards Track                     [Page 9]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   However, the ISO/IEC/ITU and ANSI X9 standard extensions are very

   broad in their applicability.  In order to develop interoperable

   implementations of X.509 v3 systems for Internet use, it is necessary

   to specify a profile for use of the X.509 v3 extensions tailored for

   the Internet.  It is one goal of this document to specify a profile

   for Internet WWW, electronic mail, and IPsec applications.

   Environments with additional requirements may build on this profile

   or may replace it.

 

3.2  Certification Paths and Trust

 

   A user of a security service requiring knowledge of a public key

   generally needs to obtain and validate a certificate containing the

   required public key. If the public-key user does not already hold an

   assured copy of the public key of the CA that signed the certificate,

   the CA's name, and related information (such as the validity period

   or name constraints), then it might need an additional certificate to

   obtain that public key.  In general, a chain of multiple certificates

   may be needed, comprising a certificate of the public key owner (the

   end entity) signed by one CA, and zero or more additional

   certificates of CAs signed by other CAs.  Such chains, called

   certification paths, are required because a public key user is only

   initialized with a limited number of assured CA public keys.

 

   There are different ways in which CAs might be configured in order

   for public key users to be able to find certification paths.  For

   PEM, RFC 1422 defined a rigid hierarchical structure of CAs.  There

   are three types of PEM certification authority:

 

      (a)  Internet Policy Registration Authority (IPRA):  This

      authority, operated under the auspices of the Internet Society,

      acts as the root of the PEM certification hierarchy at level 1.

      It issues certificates only for the next level of authorities,

      PCAs.  All certification paths start with the IPRA.

 

      (b)  Policy Certification Authorities (PCAs):  PCAs are at level 2

      of the hierarchy, each PCA being certified by the IPRA.  A PCA

      shall establish and publish a statement of its policy with respect

      to certifying users or subordinate certification authorities.

      Distinct PCAs aim to satisfy different user needs. For example,

      one PCA (an organizational PCA) might support the general

      electronic mail needs of commercial organizations, and another PCA

      (a high-assurance PCA) might have a more stringent policy designed

      for satisfying legally binding digital signature requirements.

 

 

 

 

 

 

 

Housley, et. al.            Standards Track                    [Page 10]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

      (c)  Certification Authorities (CAs):  CAs are at level 3 of the

      hierarchy and can also be at lower levels. Those at level 3 are

      certified by PCAs.  CAs represent, for example, particular

      organizations, particular organizational units (e.g., departments,

      groups, sections), or particular geographical areas.

 

   RFC 1422 furthermore has a name subordination rule which requires

   that a CA can only issue certificates for entities whose names are

   subordinate (in the X.500 naming tree) to the name of the CA itself.

   The trust associated with a PEM certification path is implied by the

   PCA name. The name subordination rule ensures that CAs below the PCA

   are sensibly constrained as to the set of subordinate entities they

   can certify (e.g., a CA for an organization can only certify entities

   in that organization's name tree). Certificate user systems are able

   to mechanically check that the name subordination rule has been

   followed.

 

   The RFC 1422 uses the X.509 v1 certificate formats. The limitations

   of X.509 v1 required imposition of several structural restrictions to

   clearly associate policy information or restrict the utility of

   certificates.  These restrictions included:

 

      (a) a pure top-down hierarchy, with all certification paths

      starting from IPRA;

 

      (b) a naming subordination rule restricting the names of a CA's

      subjects; and

 

      (c) use of the PCA concept, which requires knowledge of individual

      PCAs to be built into certificate chain verification logic.

      Knowledge of individual PCAs was required to determine if a chain

      could be accepted.

 

   With X.509 v3, most of the requirements addressed by RFC 1422 can be

   addressed using certificate extensions, without a need to restrict

   the CA structures used.  In particular, the certificate extensions

   relating to certificate policies obviate the need for PCAs and the

   constraint extensions obviate the need for the name subordination

   rule.  As a result, this document supports a more flexible

   architecture, including:

 

      (a) Certification paths may start with a public key of a CA in a

      user's own domain, or with the public key of the top of a

      hierarchy.  Starting with the public key of a CA in a user's own

      domain has certain advantages.  In some environments, the local

      domain is the most trusted.

 

 

 

 

 

Housley, et. al.            Standards Track                    [Page 11]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

      (b)  Name constraints may be imposed through explicit inclusion of

      a name constraints extension in a certificate, but are not

      required.

 

      (c)  Policy extensions and policy mappings replace the PCA

      concept, which permits a greater degree of automation.  The

      application can determine if the certification path is acceptable

      based on the contents of the certificates instead of a priori

      knowledge of PCAs. This permits automation of certificate chain

      processing.

 

3.3  Revocation

 

   When a certificate is issued, it is expected to be in use for its

   entire validity period.  However, various circumstances may cause a

   certificate to become invalid prior to the expiration of the validity

   period. Such circumstances include change of name, change of

   association between subject and CA (e.g., an employee terminates

   employment with an organization), and compromise or suspected

   compromise of the corresponding private key.  Under such

   circumstances, the CA needs to revoke the certificate.

 

   X.509 defines one method of certificate revocation.  This method

   involves each CA periodically issuing a signed data structure called

   a certificate revocation list (CRL).  A CRL is a time stamped list

   identifying revoked certificates which is signed by a CA and made

   freely available in a public repository.  Each revoked certificate is

   identified in a CRL by its certificate serial number. When a

   certificate-using system uses a certificate (e.g., for verifying a

   remote user's digital signature), that system not only checks the

   certificate signature and validity but also acquires a suitably-

   recent CRL and checks that the certificate serial number is not on

   that CRL.  The meaning of "suitably-recent" may vary with local

   policy, but it usually means the most recently-issued CRL.  A CA

   issues a new CRL on a regular periodic basis (e.g., hourly, daily, or

   weekly).  An entry is added to the CRL as part of the next update

   following notification of revocation. An entry may be removed from

   the CRL after appearing on one regularly scheduled CRL issued beyond

   the revoked certificate's validity period.

 

   An advantage of this revocation method is that CRLs may be

   distributed by exactly the same means as certificates themselves,

   namely, via untrusted communications and server systems.

 

   One limitation of the CRL revocation method, using untrusted

   communications and servers, is that the time granularity of

   revocation is limited to the CRL issue period.  For example, if a

   revocation is reported now, that revocation will not be reliably

 

 

 

Housley, et. al.            Standards Track                    [Page 12]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   notified to certificate-using systems until the next periodic CRL is

   issued -- this may be up to one hour, one day, or one week depending

   on the frequency that the CA issues CRLs.

 

   As with the X.509 v3 certificate format, in order to facilitate

   interoperable implementations from multiple vendors, the X.509 v2 CRL

   format needs to be profiled for Internet use.  It is one goal of this

   document to specify that profile.  However, this profile does not

   require CAs to issue CRLs. Message formats and protocols supporting

   on-line revocation notification may be defined in other PKIX

   specifications.  On-line methods of revocation notification may be

   applicable in some environments as an alternative to the X.509 CRL.

   On-line revocation checking may significantly reduce the latency

   between a revocation report and the distribution of the information

   to relying parties.  Once the CA accepts the report as authentic and

   valid, any query to the on-line service will correctly reflect the

   certificate validation impacts of the revocation.  However, these

   methods impose new security requirements; the certificate validator

   shall trust the on-line validation service while the repository does

   not need to be trusted.

 

3.4  Operational Protocols

 

   Operational protocols are required to deliver certificates and CRLs

   (or status information) to certificate using client systems.

   Provision is needed for a variety of different means of certificate

   and CRL delivery, including distribution procedures based on LDAP,

   HTTP, FTP, and X.500.  Operational protocols supporting these

   functions are defined in other PKIX specifications.  These

   specifications may include definitions of message formats and

   procedures for supporting all of the above operational environments,

   including definitions of or references to appropriate MIME content

   types.

 

3.5  Management Protocols

 

   Management protocols are required to support on-line interactions

   between PKI user and management entities.  For example, a management

   protocol might be used between a CA and a client system with which a

   key pair is associated, or between two CAs which cross-certify each

   other.  The set of functions which potentially need to be supported

   by management protocols include:

 

      (a)  registration:  This is the process whereby a user first makes

      itself known to a CA (directly, or through an RA), prior to that

      CA issuing  a certificate or certificates for that user.

 

 

 

 

 

Housley, et. al.            Standards Track                    [Page 13]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

      (b)  initialization:  Before a client system can operate securely

      it is necessary to install key materials which have the

      appropriate relationship with keys stored elsewhere in the

      infrastructure.  For example, the client needs to be securely

      initialized with the public key and other assured information of

      the trusted CA(s), to be used in validating certificate paths.

      Furthermore, a client typically needs to be initialized with its

      own key pair(s).

 

      (c)  certification:  This  is the process in which a CA issues a

      certificate for a user's public key, and returns that certificate

      to the user's client system and/or posts that certificate in a

      repository.

 

      (d)  key pair recovery:  As an option, user client key materials

      (e.g., a user's private key used for encryption purposes) may be

      backed up by a CA or a key backup system.  If a user needs to

      recover these backed up key materials (e.g., as a result of a

      forgotten password or a lost key chain file), an on-line protocol

      exchange may be needed to support such recovery.

 

      (e)  key pair update:  All key pairs need to be updated regularly,

      i.e., replaced with a new key pair, and new certificates issued.

 

      (f)  revocation request:  An authorized person advises a CA of an

      abnormal situation requiring certificate revocation.

 

      (g)  cross-certification:  Two CAs exchange information used in

      establishing a cross-certificate. A cross-certificate is a

      certificate issued by one CA to another CA which contains a CA

      signature key used for issuing certificates.

 

   Note that on-line protocols are not the only way of implementing the

   above functions.  For all functions there are off-line methods of

   achieving the same result, and this specification does not mandate

   use of on-line protocols.  For example, when hardware tokens are

   used, many of the functions may be achieved as part of the physical

   token delivery.  Furthermore, some of the above functions may be

   combined into one protocol exchange.  In particular, two or more of

   the registration, initialization, and certification functions can be

   combined into one protocol exchange.

 

   The PKIX series of specifications may define a set of standard

   message formats supporting the above functions in future

   specifications.  In that case, the protocols for conveying these

   messages in different environments (e.g., on-line, file transfer, e-

   mail, and WWW) will also be described in those specifications.

 

 

 

 

Housley, et. al.            Standards Track                    [Page 14]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

4  Certificate and Certificate Extensions Profile

 

   This section presents a profile for public key certificates that will

   foster interoperability and a reusable PKI.  This section is based

   upon the X.509 v3 certificate format and the standard certificate

   extensions defined in [X.509].  The ISO/IEC/ITU documents use the

   1993 version of ASN.1; while this document uses the 1988 ASN.1

   syntax, the encoded certificate and standard extensions are

   equivalent.  This section also defines private extensions required to

   support a PKI for the Internet community.

 

   Certificates may be used in a wide range of applications and

   environments covering a broad spectrum of interoperability goals and

   a broader spectrum of operational and assurance requirements.  The

   goal of this document is to establish a common baseline for generic

   applications requiring broad interoperability and limited special

   purpose requirements.  In particular, the emphasis will be on

   supporting the use of X.509 v3 certificates for informal Internet

   electronic mail, IPsec, and WWW applications.

 

4.1  Basic Certificate Fields

 

   The X.509 v3 certificate basic syntax is as follows.  For signature

   calculation, the certificate is encoded using the ASN.1 distinguished

   encoding rules (DER) [X.208].  ASN.1 DER encoding is a tag, length,

   value encoding system for each element.

 

   Certificate  ::=  SEQUENCE  {

        tbsCertificate       TBSCertificate,

        signatureAlgorithm   AlgorithmIdentifier,

        signatureValue       BIT STRING  }

 

   TBSCertificate  ::=  SEQUENCE  {

        version         [0]  EXPLICIT Version DEFAULT v1,

        serialNumber         CertificateSerialNumber,

        signature            AlgorithmIdentifier,

        issuer               Name,

        validity             Validity,

        subject              Name,

        subjectPublicKeyInfo SubjectPublicKeyInfo,

        issuerUniqueID  [1]  IMPLICIT UniqueIdentifier OPTIONAL,

                             -- If present, version shall be v2 or v3

        subjectUniqueID [2]  IMPLICIT UniqueIdentifier OPTIONAL,

                             -- If present, version shall be v2 or v3

        extensions      [3]  EXPLICIT Extensions OPTIONAL

                             -- If present, version shall be v3

        }

 

 

 

 

Housley, et. al.            Standards Track                    [Page 15]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   Version  ::=  INTEGER  {  v1(0), v2(1), v3(2)  }

 

   CertificateSerialNumber  ::=  INTEGER

 

   Validity ::= SEQUENCE {

        notBefore      Time,

        notAfter       Time }

 

   Time ::= CHOICE {

        utcTime        UTCTime,

        generalTime    GeneralizedTime }

 

   UniqueIdentifier  ::=  BIT STRING

 

   SubjectPublicKeyInfo  ::=  SEQUENCE  {

        algorithm            AlgorithmIdentifier,

        subjectPublicKey     BIT STRING  }

 

   Extensions  ::=  SEQUENCE SIZE (1..MAX) OF Extension

 

   Extension  ::=  SEQUENCE  {

        extnID      OBJECT IDENTIFIER,

        critical    BOOLEAN DEFAULT FALSE,

        extnValue   OCTET STRING  }

 

   The following items describe the X.509 v3 certificate for use in the

   Internet.

 

4.1.1  Certificate Fields

 

   The Certificate is a SEQUENCE of three required fields. The fields

   are described in detail in the following subsections.

 

4.1.1.1  tbsCertificate

 

   The field contains the names of the subject and issuer, a public key

   associated with the subject, a validity period, and other associated

   information.  The fields are described in detail in section 4.1.2;

   the tbscertificate may also include extensions which are described in

   section 4.2.

 

4.1.1.2  signatureAlgorithm

 

   The signatureAlgorithm field contains the identifier for the

   cryptographic algorithm used by the CA to sign this certificate.

   Section 7.2 lists the supported signature algorithms.

 

   An algorithm identifier is defined by the following ASN.1 structure:

 

 

 

Housley, et. al.            Standards Track                    [Page 16]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   AlgorithmIdentifier  ::=  SEQUENCE  {

        algorithm               OBJECT IDENTIFIER,

        parameters              ANY DEFINED BY algorithm OPTIONAL  }

 

   The algorithm identifier is used to identify a cryptographic

   algorithm.  The OBJECT IDENTIFIER component identifies the algorithm

   (such as DSA with SHA-1).  The contents of the optional parameters

   field will vary according to the algorithm identified. Section 7.2

   lists the supported algorithms for this specification.

 

   This field MUST contain the same algorithm identifier as the

   signature field in the sequence tbsCertificate (see sec. 4.1.2.3).

 

4.1.1.3  signatureValue

 

   The signatureValue field contains a digital signature computed upon

   the ASN.1 DER encoded tbsCertificate.  The ASN.1 DER encoded

   tbsCertificate is used as the input to the signature function. This

   signature value is then ASN.1 encoded as a BIT STRING and included in

   the Certificate's signature field. The details of this process are

   specified for each of the supported algorithms in Section 7.2.

 

   By generating this signature, a CA certifies the validity of the

   information in the tbsCertificate field.  In particular, the CA

   certifies the binding between the public key material and the subject

   of the certificate.

 

4.1.2  TBSCertificate

 

   The sequence TBSCertificate contains information associated with the

   subject of the certificate and the CA who issued it.  Every

   TBSCertificate contains the names of the subject and issuer, a public

   key associated with the subject, a validity period, a version number,

   and a serial number; some may contain optional unique identifier

   fields.  The remainder of this section describes the syntax and

   semantics of these fields.  A TBSCertificate may also include

   extensions.  Extensions for the Internet PKI are described in Section

   4.2.

 

4.1.2.1  Version

 

   This field describes the version of the encoded certificate.  When

   extensions are used, as expected in this profile, use X.509 version 3

   (value is 2).  If no extensions are present, but a UniqueIdentifier

   is present, use version 2 (value is 1).  If only basic fields are

   present, use version 1 (the value is omitted from the certificate as

   the default value).

 

 

 

 

Housley, et. al.            Standards Track                    [Page 17]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   Implementations SHOULD be prepared to accept any version certificate.

   At a minimum, conforming implementations MUST recognize version 3

   certificates.

 

   Generation of version 2 certificates is not expected by

   implementations based on this profile.

 

4.1.2.2  Serial number

 

   The serial number is an integer assigned by the CA to each

   certificate.  It MUST be unique for each certificate issued by a

   given CA (i.e., the issuer name and serial number identify a unique

   certificate).

 

4.1.2.3  Signature

 

   This field contains the algorithm identifier for the algorithm used

   by the CA to sign the certificate.

 

   This field MUST contain the same algorithm identifier as the

   signatureAlgorithm field in the sequence Certificate (see sec.

   4.1.1.2).  The contents of the optional parameters field will vary

   according to the algorithm identified.  Section 7.2 lists the

   supported signature algorithms.

 

4.1.2.4  Issuer

 

   The issuer field identifies the entity who has signed and issued the

   certificate.  The issuer field MUST contain a non-empty distinguished

   name (DN).  The issuer field is defined as the X.501 type Name.

   [X.501] Name is defined by the following ASN.1 structures:

 

   Name ::= CHOICE {

     RDNSequence }

 

   RDNSequence ::= SEQUENCE OF RelativeDistinguishedName

 

   RelativeDistinguishedName ::=

     SET OF AttributeTypeAndValue

 

   AttributeTypeAndValue ::= SEQUENCE {

     type     AttributeType,

     value    AttributeValue }

 

   AttributeType ::= OBJECT IDENTIFIER

 

   AttributeValue ::= ANY DEFINED BY AttributeType

 

 

 

 

Housley, et. al.            Standards Track                    [Page 18]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   DirectoryString ::= CHOICE {

         teletexString           TeletexString (SIZE (1..MAX)),

         printableString         PrintableString (SIZE (1..MAX)),

         universalString         UniversalString (SIZE (1..MAX)),

         utf8String              UTF8String (SIZE (1.. MAX)),

         bmpString               BMPString (SIZE (1..MAX)) }

 

   The Name describes a hierarchical name composed of attributes, such

   as country name, and corresponding values, such as US.  The type of

   the component AttributeValue is determined by the AttributeType; in

   general it will be a DirectoryString.

 

   The DirectoryString type is defined as a choice of PrintableString,

   TeletexString, BMPString, UTF8String, and UniversalString.  The

   UTF8String encoding is the preferred encoding, and all certificates

   issued after December 31, 2003 MUST use the UTF8String encoding of

   DirectoryString (except as noted below).  Until that date, conforming

   CAs MUST choose from the following options when creating a

   distinguished name, including their own:

 

      (a) if the character set is sufficient, the string MAY be

      represented as a PrintableString;

 

      (b) failing (a), if the BMPString character set is sufficient the

      string MAY be represented as a BMPString; and

 

      (c) failing (a) and (b), the string MUST be represented as a

      UTF8String.  If (a) or (b) is satisfied, the CA MAY still choose

      to represent the string as a UTF8String.

 

   Exceptions to the December 31, 2003 UTF8 encoding requirements are as

   follows:

 

      (a) CAs MAY issue "name rollover" certificates to support an

      orderly migration to UTF8String encoding.  Such certificates would

      include the CA's UTF8String encoded name as issuer and and the old

      name encoding as subject, or vice-versa.

 

      (b) As stated in section 4.1.2.6, the subject field MUST be

      populated with a non-empty distinguished name matching the

      contents of the issuer field in all certificates issued by the

      subject CA regardless of encoding.

 

   The TeletexString and UniversalString are included for backward

   compatibility, and should not be used for certificates for new

   subjects.  However, these types may be used in certificates where the

   name was previously established.  Certificate users SHOULD be

   prepared to receive certificates with these types.

 

 

 

Housley, et. al.            Standards Track                    [Page 19]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   In addition, many legacy implementations support names encoded in the

   ISO 8859-1 character set (Latin1String) but tag them as

   TeletexString.  The Latin1String includes characters used in Western

   European countries which are not part of the TeletexString charcter

   set.  Implementations that process TeletexString SHOULD be prepared

   to handle the entire ISO 8859-1 character set.[ISO 8859-1]

 

   As noted above, distinguished names are composed of attributes.  This

   specification does not restrict the set of attribute types that may

   appear in names.  However, conforming implementations MUST be

   prepared to receive certificates with issuer names containing the set

   of attribute types defined below.  This specification also recommends

   support for additional attribute types.

 

   Standard sets of attributes have been defined in the X.500 series of

   specifications.[X.520]  Implementations of this specification MUST be

   prepared to receive the following standard attribute types in issuer

   names: country, organization, organizational-unit, distinguished name

   qualifier, state or province name,  and common name (e.g., "Susan

   Housley").  In addition, implementations of this specification SHOULD

   be prepared to receive the following standard attribute types in

   issuer names: locality, title,  surname, given name, initials, and

   generation qualifier (e.g., "Jr.", "3rd", or "IV").  The syntax and

   associated object identifiers (OIDs) for these attribute types are

   provided in the ASN.1 modules in Appendices A and B.

 

   In addition, implementations of this specification MUST be prepared

   to receive the domainComponent attribute, as defined in [RFC 2247].

   The Domain (Nameserver) System (DNS) provides a hierarchical resource

   labeling system.  This attribute provides is a convenient mechanism

   for organizations that wish to use DNs that parallel their DNS names.

   This is not a replacement for the dNSName component of the

   alternative name field. Implementations are not required to convert

   such names into DNS names. The syntax and associated OID for this

   attribute type is provided in the ASN.1 modules in Appendices A and

   B.

 

   Certificate users MUST be prepared to process the issuer

   distinguished name and subject distinguished name (see sec. 4.1.2.6)

   fields to perform name chaining for certification path validation

   (see section 6). Name chaining is performed by matching the issuer

   distinguished name in one certificate with the subject name in a CA

   certificate.

 

   This specification requires only a subset of the name comparison

   functionality specified in the X.500 series of specifications.  The

   requirements for conforming implementations are as follows:

 

 

 

 

Housley, et. al.            Standards Track                    [Page 20]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

      (a) attribute values encoded in different types (e.g.,

      PrintableString and BMPString) may be assumed to represent

      different strings;

 

      (b) attribute values in types other than PrintableString are case

      sensitive (this permits matching of attribute values as binary

      objects);

 

      (c) attribute values in PrintableString are not case sensitive

      (e.g., "Marianne Swanson" is the same as "MARIANNE SWANSON"); and

 

      (d) attribute values in PrintableString are compared after

      removing leading and trailing white space and converting internal

      substrings of one or more consecutive white space characters to a

      single space.

 

   These name comparison rules permit a certificate user to validate

   certificates issued using languages or encodings unfamiliar to the

   certificate user.

 

   In addition, implementations of this specification MAY use these

   comparison rules to process unfamiliar attribute types for name

   chaining. This allows implementations to process certificates with

   unfamiliar attributes in the issuer name.

 

   Note that the comparison rules defined in the X.500 series of

   specifications indicate that the character sets used to encode data

   in distinguished names are irrelevant.  The characters themselves are

   compared without regard to encoding. Implementations of the profile

   are permitted to use the comparison algorithm defined in the X.500

   series.  Such an implementation will recognize a superset of name

   matches recognized by the algorithm specified above.

 

4.1.2.5  Validity

 

   The certificate validity period is the time interval during which the

   CA warrants that it will maintain information about the status of the

   certificate. The field is represented as a SEQUENCE of two dates:

   the date on which the certificate validity period begins (notBefore)

   and the date on which the certificate validity period ends

   (notAfter).  Both notBefore and notAfter may be encoded as UTCTime or

   GeneralizedTime.

 

   CAs conforming to this profile MUST always encode certificate

   validity dates through the year 2049 as UTCTime; certificate validity

   dates in 2050 or later MUST be encoded as GeneralizedTime.

 

 

 

 

 

Housley, et. al.            Standards Track                    [Page 21]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

4.1.2.5.1  UTCTime

 

   The universal time type, UTCTime, is a standard ASN.1 type intended

   for international applications where local time alone is not

   adequate.  UTCTime specifies the year through the two low order

   digits and time is specified to the precision of one minute or one

   second.  UTCTime includes either Z (for Zulu, or Greenwich Mean Time)

   or a time differential.

 

   For the purposes of this profile, UTCTime values MUST be expressed

   Greenwich Mean Time (Zulu) and MUST include seconds (i.e., times are

   YYMMDDHHMMSSZ), even where the number of seconds is zero.  Conforming

   systems MUST interpret the year field (YY) as follows:

 

      Where YY is greater than or equal to 50, the year shall be

      interpreted as 19YY; and

 

      Where YY is less than 50, the year shall be interpreted as 20YY.

 

4.1.2.5.2  GeneralizedTime

 

   The generalized time type, GeneralizedTime, is a standard ASN.1 type

   for variable precision representation of time.  Optionally, the

   GeneralizedTime field can include a representation of the time

   differential between local and Greenwich Mean Time.

 

   For the purposes of this profile, GeneralizedTime values MUST be

   expressed Greenwich Mean Time (Zulu) and MUST include seconds (i.e.,

   times are YYYYMMDDHHMMSSZ), even where the number of seconds is zero.

   GeneralizedTime values MUST NOT include fractional seconds.

 

4.1.2.6  Subject

 

   The subject field identifies the entity associated with the public

   key stored in the subject public key field.  The subject name may be

   carried in the subject field and/or the subjectAltName extension.  If

   the subject is a CA (e.g., the basic constraints extension, as

   discussed in 4.2.1.10, is present and the value of cA is TRUE,) then

   the subject field MUST be populated with a non-empty distinguished

   name matching the contents of the issuer field (see sec. 4.1.2.4) in

   all certificates issued by the subject CA.  If subject naming

   information is present only in the subjectAltName extension (e.g., a

   key bound only to an email address or URI), then the subject name

   MUST be an empty sequence and the subjectAltName extension MUST be

   critical.

 

 

 

 

 

 

Housley, et. al.            Standards Track                    [Page 22]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   Where it is non-empty, the subject field MUST contain an X.500

   distinguished name (DN). The DN MUST be unique for each subject

   entity certified by the one CA as defined by the issuer name field. A

   CA may issue more than one certificate with the same DN to the same

   subject entity.

 

   The subject name field is defined as the X.501 type Name.

   Implementation requirements for this field are those defined for the

   issuer field (see sec.  4.1.2.4).  When encoding attribute values of

   type DirectoryString, the encoding rules for the issuer field MUST be

   implemented.  Implementations of this specification MUST be prepared

   to receive subject names containing the attribute types required for

   the issuer field.  Implementations of this specification SHOULD be

   prepared to receive subject names containing the recommended

   attribute types for the issuer field.  The syntax and associated

   object identifiers (OIDs) for these attribute types are provided in

   the ASN.1 modules in Appendices A and B.  Implementations of this

   specification MAY use these comparison rules to process unfamiliar

   attribute types (i.e., for name chaining). This allows

   implementations to process certificates with unfamiliar attributes in

   the subject name.

 

   In addition, legacy implementations exist where an RFC 822 name is

   embedded in the subject distinguished name as an EmailAddress

   attribute.  The attribute value for EmailAddress is of type IA5String

   to permit inclusion of the character '@', which is not part of the

   PrintableString character set.  EmailAddress attribute values are not

   case sensitive (e.g., "fanfeedback@redsox.com" is the same as

   "FANFEEDBACK@REDSOX.COM").

 

   Conforming implementations generating new certificates with

   electronic mail addresses MUST use the rfc822Name in the subject

   alternative name field (see sec. 4.2.1.7) to describe such

   identities.  Simultaneous inclusion of the EmailAddress attribute in

   the subject distinguished name to support legacy implementations is

   deprecated but permitted.

 

4.1.2.7  Subject Public Key Info

 

   This field is used to carry the public key and identify the algorithm

   with which the key is used. The algorithm is identified using the

   AlgorithmIdentifier structure specified in section 4.1.1.2. The

   object identifiers for the supported algorithms and the methods for

   encoding the public key materials (public key and parameters) are

   specified in section 7.3.

 

 

 

 

 

 

Housley, et. al.            Standards Track                    [Page 23]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

4.1.2.8  Unique Identifiers

 

   These fields may only appear if the version is 2 or 3 (see sec.

   4.1.2.1).  The subject and issuer unique identifiers are present in

   the certificate to handle the possibility of reuse of subject and/or

   issuer names over time.  This profile recommends that names not be

   reused for different entities and that Internet certificates not make

   use of unique identifiers.  CAs conforming to this profile SHOULD NOT

   generate certificates with unique identifiers.  Applications

   conforming to this profile SHOULD be capable of parsing unique

   identifiers and making comparisons.

 

4.1.2.9  Extensions

 

   This field may only appear if the version is 3 (see sec. 4.1.2.1).

   If present, this field is a SEQUENCE of one or more certificate

   extensions. The format and content of certificate extensions in the

   Internet PKI is defined in section 4.2.

 

4.2  Standard Certificate Extensions

 

   The extensions defined for X.509 v3 certificates provide methods for

   associating additional attributes with users or public keys and for

   managing the certification hierarchy.  The X.509 v3 certificate

   format also allows communities to define private extensions to carry

   information unique to those communities.  Each extension in a

   certificate may be designated as critical or non-critical.  A

   certificate using system MUST reject the certificate if it encounters

   a critical extension it does not recognize; however, a non-critical

   extension may be ignored if it is not recognized.  The following

   sections present recommended extensions used within Internet

   certificates and standard locations for information.  Communities may

   elect to use additional extensions; however, caution should be

   exercised in adopting any critical extensions in certificates which

   might prevent use in a general context.

 

   Each extension includes an OID and an ASN.1 structure.  When an

   extension appears in a certificate, the OID appears as the field

   extnID and the corresponding ASN.1 encoded structure is the value of

   the octet string extnValue.  Only one instance of a particular

   extension may appear in a particular certificate. For example, a

   certificate may contain only one authority key identifier extension

   (see sec. 4.2.1.1).  An extension includes the boolean critical, with

   a default value of FALSE.  The text for each extension specifies the

   acceptable values for the critical field.

 

 

 

 

 

 

Housley, et. al.            Standards Track                    [Page 24]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   Conforming CAs MUST support key identifiers (see sec. 4.2.1.1 and

   4.2.1.2), basic constraints (see sec. 4.2.1.10), key usage (see sec.

   4.2.1.3), and certificate policies (see sec. 4.2.1.5) extensions. If

   the CA issues certificates with an empty sequence for the subject

   field, the CA MUST support the subject alternative name extension

   (see sec. 4.2.1.7).  Support for the remaining extensions is

   OPTIONAL. Conforming CAs may support extensions that are not

   identified within this specification; certificate issuers are

   cautioned that marking such extensions as critical may inhibit

   interoperability.

 

   At a minimum, applications conforming to this profile MUST recognize

   the extensions which must or may be critical in this specification.

   These extensions are:  key usage (see sec. 4.2.1.3), certificate

   policies (see sec. 4.2.1.5), the subject alternative name (see sec.

   4.2.1.7), basic constraints (see sec. 4.2.1.10), name constraints

   (see sec. 4.2.1.11), policy constraints (see sec. 4.2.1.12), and

   extended key usage (see sec. 4.2.1.13).

 

   In addition, this profile RECOMMENDS application support for the

   authority and subject key identifier (see sec. 4.2.1.1 and 4.2.1.2)

   extensions.

 

4.2.1  Standard Extensions

 

   This section identifies standard certificate extensions defined in

   [X.509] for use in the Internet PKI.  Each extension is associated

   with an OID defined in [X.509].  These OIDs are members of the id-ce

   arc, which is defined by the following:

 

   id-ce   OBJECT IDENTIFIER ::=  {joint-iso-ccitt(2) ds(5) 29}

 

4.2.1.1  Authority Key Identifier

 

   The authority key identifier extension provides a means of

   identifying the public key corresponding to the private key used to

   sign a certificate. This extension is used where an issuer has

   multiple signing keys (either due to multiple concurrent key pairs or

   due to changeover).  The identification may be based on either the

   key identifier (the subject key identifier in the issuer's

   certificate) or on the issuer name and serial number.

 

   The keyIdentifier field of the authorityKeyIdentifier extension MUST

   be included in all certificates generated by conforming CAs to

   facilitate chain building.  There is one exception; where a CA

   distributes its public key in the form of a "self-signed"

   certificate, the authority key identifier may be omitted.  In this

   case, the subject and authority key identifiers would be identical.

 

 

 

Housley, et. al.            Standards Track                    [Page 25]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   The value of the keyIdentifier field SHOULD be derived from the

   public key used to verify the certificate's signature or a method

   that generates unique values.  Two common methods for generating key

   identifiers from the public key are described in (sec. 4.2.1.2). One

   common method for generating unique values isdescribed in (sec.

   4.2.1.2).  Where a key identifier has not been previously

   established, this specification recommends use of one of these

   methods for generating keyIdentifiers.

 

   This profile recommends support for the key identifier method by all

   certificate users.

 

   This extension MUST NOT be marked critical.

 

   id-ce-authorityKeyIdentifier OBJECT IDENTIFIER ::=  { id-ce 35 }

 

   AuthorityKeyIdentifier ::= SEQUENCE {

      keyIdentifier             [0] KeyIdentifier           OPTIONAL,

      authorityCertIssuer       [1] GeneralNames            OPTIONAL,

      authorityCertSerialNumber [2] CertificateSerialNumber OPTIONAL  }

 

   KeyIdentifier ::= OCTET STRING

 

4.2.1.2  Subject Key Identifier

 

   The subject key identifier extension provides a means of identifying

   certificates that contain a particular public key.

 

   To facilitate chain building, this extension MUST appear in all con-

   forming CA certificates, that is, all certificates including the

   basic constraints extension (see sec. 4.2.1.10) where the value of cA

   is TRUE.  The value of the subject key identifier MUST be the value

   placed in the key identifier field of the Authority Key Identifier

   extension (see sec. 4.2.1.1) of certificates issued by the subject of

   this certificate.

 

   For CA certificates, subject key identifiers SHOULD be derived from

   the public key or a method that generates unique values.  Two common

   methods for generating key identifiers from the public key are:

 

      (1) The keyIdentifier is composed of the 160-bit SHA-1 hash of the

      value of the BIT STRING subjectPublicKey (excluding the tag,

      length, and number of unused bits).

 

      (2) The keyIdentifier is composed of a four bit type field with

      the value 0100 followed by the least significant 60 bits of the

      SHA-1 hash of the value of the BIT STRING subjectPublicKey.

 

 

 

 

Housley, et. al.            Standards Track                    [Page 26]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   One common method for generating unique values is a monotomically

   increasing sequence of integers.

 

   For end entity certificates, the subject key identifier extension

   provides a means for identifying certificates containing the

   particular public key used in an application. Where an end entity has

   obtained multiple certificates, especially from multiple CAs, the

   subject key identifier provides a means to quickly identify the set

   of certificates containing a particular public key. To assist

   applications in identificiation the appropriate end entity

   certificate, this extension SHOULD be included in all end entity

   certificates.

 

   For end entity certificates, subject key identifiers SHOULD be

   derived from the public key.  Two common methods for generating key

   identifiers from the public key are identifed above.

 

   Where a key identifier has not been previously established, this

   specification recommends use of one of these methods for generating

   keyIdentifiers.

 

   This extension MUST NOT be marked critical.

 

   id-ce-subjectKeyIdentifier OBJECT IDENTIFIER ::=  { id-ce 14 }

 

   SubjectKeyIdentifier ::= KeyIdentifier

 

4.2.1.3  Key Usage

 

   The key usage extension defines the purpose (e.g., encipherment,

   signature, certificate signing) of the key contained in the

   certificate.  The usage restriction might be employed when a key that

   could be used for more than one operation is to be restricted.  For

   example, when an RSA key should be used only for signing, the

   digitalSignature and/or nonRepudiation bits would be asserted.

   Likewise, when an RSA key should be used only for key management, the

   keyEncipherment bit would be asserted. When used, this extension

   SHOULD be marked critical.

 

      id-ce-keyUsage OBJECT IDENTIFIER ::=  { id-ce 15 }

 

      KeyUsage ::= BIT STRING {

           digitalSignature        (0),

           nonRepudiation          (1),

           keyEncipherment         (2),

           dataEncipherment        (3),

           keyAgreement            (4),

           keyCertSign             (5),

 

 

 

Housley, et. al.            Standards Track                    [Page 27]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

           cRLSign                 (6),

           encipherOnly            (7),

           decipherOnly            (8) }

 

 

   Bits in the KeyUsage type are used as follows:

 

      The digitalSignature bit is asserted when the subject public key

      is used with a digital signature mechanism to support security

      services other than non-repudiation (bit 1), certificate signing

      (bit 5), or revocation information signing (bit 6). Digital

      signature mechanisms are often used for entity authentication and

      data origin authentication with integrity.

 

      The nonRepudiation bit is asserted when the subject public key is

      used to verify digital signatures used to provide a non-

      repudiation service which protects against the signing entity

      falsely denying some action, excluding certificate or CRL signing.

 

      The keyEncipherment bit is asserted when the subject public key is

      used for key transport.  For example, when an RSA key is to be

      used for key management, then this bit shall asserted.

 

      The dataEncipherment bit is asserted when the subject public key

      is used for enciphering user data, other than cryptographic keys.

 

      The keyAgreement bit is asserted when the subject public key is

      used for key agreement.  For example, when a Diffie-Hellman key is

      to be used for key management, then this bit shall asserted.

 

      The keyCertSign bit is asserted when the subject public key is

      used for verifying a signature on certificates.  This bit may only

      be asserted in CA certificates.

 

      The cRLSign bit is asserted when the subject public key is used

      for verifying a signature on revocation information (e.g., a CRL).

 

      The meaning of the encipherOnly bit is undefined in the absence of

      the keyAgreement bit.  When the encipherOnly bit is asserted and

      the keyAgreement bit is also set, the subject public key may be

      used only for enciphering data while performing key agreement.

 

      The meaning of the decipherOnly bit is undefined in the absence of

      the keyAgreement bit.  When the decipherOnly bit is asserted and

      the keyAgreement bit is also set, the subject public key may be

      used only for deciphering data while performing key agreement.

 

 

 

 

 

Housley, et. al.            Standards Track                    [Page 28]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   This profile does not restrict the combinations of bits that may be

   set in an instantiation of the keyUsage extension.  However,

   appropriate values for keyUsage extensions for particular algorithms

   are specified in section 7.3.

 

4.2.1.4  Private Key Usage Period

 

   This profile recommends against the use of this extension.  CAs

   conforming to this profile MUST NOT generate certificates with

   critical private key usage period extensions.

 

   The private key usage period extension allows the certificate issuer

   to specify a different validity period for the private key than the

   certificate. This extension is intended for use with digital

   signature keys.  This extension consists of two optional components,

   notBefore and notAfter.  The private key associated with the

   certificate should not be used to sign objects before or after the

   times specified by the two components, respectively. CAs conforming

   to this profile MUST NOT generate certificates with private key usage

   period extensions unless at least one of the two components is

   present.

 

   Where used, notBefore and notAfter are represented as GeneralizedTime

   and MUST be specified and interpreted as defined in section

   4.1.2.5.2.

 

   id-ce-privateKeyUsagePeriod OBJECT IDENTIFIER ::=  { id-ce 16 }

 

   PrivateKeyUsagePeriod ::= SEQUENCE {

        notBefore       [0]     GeneralizedTime OPTIONAL,

        notAfter        [1]     GeneralizedTime OPTIONAL }

 

4.2.1.5  Certificate Policies

 

   The certificate policies extension contains a sequence of one or more

   policy information terms, each of which consists of an object

   identifier (OID) and optional qualifiers.  These policy information

   terms indicate the policy under which the certificate has been issued

   and the purposes for which the certificate may be used.  Optional

   qualifiers, which may be present, are not expected to change the

   definition of the policy.

 

   Applications with specific policy requirements are expected to have a

   list of those policies which they will accept and to compare the

   policy OIDs in the certificate to that list.  If this extension is

   critical, the path validation software MUST be able to interpret this

   extension (including the optional qualifier), or MUST reject the

   certificate.

 

 

 

Housley, et. al.            Standards Track                    [Page 29]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   To promote interoperability, this profile RECOMMENDS that policy

   information terms consist of only an OID.  Where an OID alone is

   insufficient, this profile strongly recommends that use of qualifiers

   be limited to those identified in this section.

 

   This specification defines two policy qualifier types for use by

   certificate policy writers and certificate issuers. The qualifier

   types are the CPS Pointer and User Notice qualifiers.

 

   The CPS Pointer qualifier contains a pointer to a Certification

   Practice Statement (CPS) published by the CA.  The pointer is in the

   form of a URI.

 

   User notice is intended for display to a relying party when a

   certificate is used.  The application software SHOULD display all

   user notices in all certificates of the certification path used,

   except that if a notice is duplicated only one copy need be

   displayed.  To prevent such duplication, this qualifier SHOULD only

   be present in end-entity certificates and CA certificates issued to

   other organizations.

 

   The user notice has two optional fields: the noticeRef field and the

   explicitText field.

 

      The noticeRef field, if used, names an organization and

      identifies, by number, a particular textual statement prepared by

      that organization.  For example, it might identify the

      organization "CertsRUs" and notice number 1.  In a typical

      implementation, the application software will have a notice file

      containing the current set of notices for CertsRUs; the

      application will extract the notice text from the file and display

      it.  Messages may be multilingual, allowing the software to select

      the particular language message for its own environment.

 

      An explicitText field includes the textual statement directly in

      the certificate.  The explicitText field is a string with a

      maximum size of 200 characters.

 

   If both the noticeRef and explicitText options are included in the

   one qualifier and if the application software can locate the notice

   text indicated by the noticeRef option then that text should be

   displayed; otherwise, the explicitText string should be displayed.

 

   id-ce-certificatePolicies OBJECT IDENTIFIER ::=  { id-ce 32 }

 

   certificatePolicies ::= SEQUENCE SIZE (1..MAX) OF PolicyInformation

 

 

 

 

 

Housley, et. al.            Standards Track                    [Page 30]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   PolicyInformation ::= SEQUENCE {

        policyIdentifier   CertPolicyId,

        policyQualifiers   SEQUENCE SIZE (1..MAX) OF

                                PolicyQualifierInfo OPTIONAL }

 

   CertPolicyId ::= OBJECT IDENTIFIER

 

   PolicyQualifierInfo ::= SEQUENCE {

        policyQualifierId  PolicyQualifierId,

        qualifier          ANY DEFINED BY policyQualifierId }

 

   -- policyQualifierIds for Internet policy qualifiers

 

   id-qt          OBJECT IDENTIFIER ::=  { id-pkix 2 }

   id-qt-cps      OBJECT IDENTIFIER ::=  { id-qt 1 }

   id-qt-unotice  OBJECT IDENTIFIER ::=  { id-qt 2 }

 

   PolicyQualifierId ::=

        OBJECT IDENTIFIER ( id-qt-cps | id-qt-unotice )

 

   Qualifier ::= CHOICE {

        cPSuri           CPSuri,

        userNotice       UserNotice }

 

   CPSuri ::= IA5String

 

   UserNotice ::= SEQUENCE {

        noticeRef        NoticeReference OPTIONAL,

        explicitText     DisplayText OPTIONAL}

 

   NoticeReference ::= SEQUENCE {

        organization     DisplayText,

        noticeNumbers    SEQUENCE OF INTEGER }

 

   DisplayText ::= CHOICE {

        visibleString    VisibleString  (SIZE (1..200)),

        bmpString        BMPString      (SIZE (1..200)),

        utf8String       UTF8String     (SIZE (1..200)) }

 

4.2.1.6  Policy Mappings

 

   This extension is used in CA certificates.  It lists one or more

   pairs of OIDs; each pair includes an issuerDomainPolicy and a

   subjectDomainPolicy. The pairing indicates the issuing CA considers

   its issuerDomainPolicy equivalent to the subject CA's

   subjectDomainPolicy.

 

 

 

 

 

Housley, et. al.            Standards Track                    [Page 31]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   The issuing CA's users may accept an issuerDomainPolicy for certain

   applications. The policy mapping tells the issuing CA's users which

   policies associated with the subject CA are comparable to the policy

   they accept.

 

   This extension may be supported by CAs and/or applications, and it

   MUST be non-critical.

 

   id-ce-policyMappings OBJECT IDENTIFIER ::=  { id-ce 33 }

 

   PolicyMappings ::= SEQUENCE SIZE (1..MAX) OF SEQUENCE {

        issuerDomainPolicy      CertPolicyId,

        subjectDomainPolicy     CertPolicyId }

 

4.2.1.7  Subject Alternative Name

 

   The subject alternative names extension allows additional identities

   to be bound to the subject of the certificate.  Defined options

   include an Internet electronic mail address, a DNS name, an IP

   address, and a uniform resource identifier (URI).  Other options

   exist, including completely local definitions.  Multiple name forms,

   and multiple instances of each name form, may be included.  Whenever

   such identities are to be bound into a certificate, the subject

   alternative name (or issuer alternative name) extension MUST be used.

 

   Because the subject alternative name is considered to be

   definitiviely bound to the public key, all parts of the subject

   alternative name MUST be verified by the CA.

 

   Further, if the only subject identity included in the certificate is

   an alternative name form (e.g., an electronic mail address), then the

   subject distinguished name MUST be empty (an empty sequence), and the

   subjectAltName extension MUST be present. If the subject field

   contains an empty sequence, the subjectAltName extension MUST be

   marked critical.

 

   When the subjectAltName extension contains an Internet mail address,

   the address MUST be included as an rfc822Name. The format of an

   rfc822Name is an "addr-spec" as defined in RFC 822 [RFC 822]. An

   addr-spec has the form "local-part@domain". Note that an addr-spec

   has no phrase (such as a common name) before it, has no comment (text

   surrounded in parentheses) after it, and is not surrounded by "<" and

   ">". Note that while upper and lower case letters are allowed in an

   RFC 822 addr-spec, no significance is attached to the case.

 

   When the subjectAltName extension contains a iPAddress, the address

   MUST be stored in the octet string in "network byte order," as

   specified in RFC 791 [RFC 791]. The least significant bit (LSB) of

 

 

 

Housley, et. al.            Standards Track                    [Page 32]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   each octet is the LSB of the corresponding byte in the network

   address. For IP Version 4, as specified in RFC 791, the octet string

   MUST contain exactly four octets.  For IP Version 6, as specified in

   RFC 1883, the octet string MUST contain exactly sixteen octets [RFC

   1883].

 

   When the subjectAltName extension contains a domain name service

   label, the domain name MUST be stored in the dNSName (an IA5String).

   The name MUST be in the "preferred name syntax," as specified by RFC

   1034 [RFC 1034]. Note that while upper and lower case letters are

   allowed in domain names, no signifigance is attached to the case.  In

   addition, while the string " " is a legal domain name, subjectAltName

   extensions with a dNSName " " are not permitted.  Finally, the use of

   the DNS representation for Internet mail addresses (wpolk.nist.gov

   instead of wpolk@nist.gov) is not permitted; such identities are to

   be encoded as rfc822Name.

 

   When the subjectAltName extension contains a URI, the name MUST be

   stored in the uniformResourceIdentifier (an IA5String). The name MUST

   be a non-relative URL, and MUST follow the URL syntax and encoding

   rules specified in [RFC 1738].  The name must include both a scheme

   (e.g., "http" or "ftp") and a scheme-specific-part.  The scheme-

   specific-part must include a fully qualified domain name or IP

   address as the host.

 

   As specified in [RFC 1738], the scheme name is not case-sensitive

   (e.g., "http" is equivalent to "HTTP").  The host part is also not

   case-sensitive, but other components of the scheme-specific-part may

   be case-sensitive. When comparing URIs, conforming implementations

   MUST compare the scheme and host without regard to case, but assume

   the remainder of the scheme-specific-part is case sensitive.

 

   Subject alternative names may be constrained in the same manner as

   subject distinguished names using the name constraints extension as

   described in section 4.2.1.11.

 

   If the subjectAltName extension is present, the sequence MUST contain

   at least one entry.  Unlike the subject field, conforming CAs MUST

   NOT issue certificates with subjectAltNames containing empty

   GeneralName fields. For example, an rfc822Name is represented as an

   IA5String. While an empty string is a valid IA5String, such an

   rfc822Name is not permitted by this profile.  The behavior of clients

   that encounter such a certificate when processing a certificication

   path is not defined by this profile.

 

 

 

 

 

 

 

Housley, et. al.            Standards Track                    [Page 33]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   Finally, the semantics of subject alternative names that include

   wildcard characters (e.g., as a placeholder for a set of names) are

   not addressed by this specification.  Applications with specific

   requirements may use such names but shall define the semantics.

 

 

      id-ce-subjectAltName OBJECT IDENTIFIER ::=  { id-ce 17 }

 

      SubjectAltName ::= GeneralNames

 

      GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName

 

      GeneralName ::= CHOICE {

           otherName                       [0]     OtherName,

           rfc822Name                      [1]     IA5String,

           dNSName                         [2]     IA5String,

           x400Address                     [3]     ORAddress,

           directoryName                   [4]     Name,

           ediPartyName                    [5]     EDIPartyName,

           uniformResourceIdentifier       [6]     IA5String,

           iPAddress                       [7]     OCTET STRING,

           registeredID                    [8]     OBJECT IDENTIFIER}

 

      OtherName ::= SEQUENCE {

           type-id    OBJECT IDENTIFIER,

           value      [0] EXPLICIT ANY DEFINED BY type-id }

 

      EDIPartyName ::= SEQUENCE {

           nameAssigner            [0]     DirectoryString OPTIONAL,

           partyName               [1]     DirectoryString }

 

4.2.1.8  Issuer Alternative Names

 

   As with 4.2.1.7, this extension is used to associate Internet style

   identities with the certificate issuer. Issuer alternative names MUST

   be encoded as in 4.2.1.7.

 

   Where present, this extension SHOULD NOT be marked critical.

 

      id-ce-issuerAltName OBJECT IDENTIFIER ::=  { id-ce 18 }

 

      IssuerAltName ::= GeneralNames

 

4.2.1.9  Subject Directory Attributes

 

   The subject directory attributes extension is not recommended as an

   essential part of this profile, but it may be used in local

   environments.  This extension MUST be non-critical.

 

 

 

Housley, et. al.            Standards Track                    [Page 34]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   id-ce-subjectDirectoryAttributes OBJECT IDENTIFIER ::=  { id-ce 9 }

 

   SubjectDirectoryAttributes ::= SEQUENCE SIZE (1..MAX) OF Attribute

 

4.2.1.10  Basic Constraints

 

   The basic constraints extension identifies whether the subject of the

   certificate is a CA and how deep a certification path may exist

   through that CA.

 

   The pathLenConstraint field is meaningful only if cA is set to TRUE.

   In this case, it gives the maximum number of CA certificates that may

   follow this certificate in a certification path. A value of zero

   indicates that only an end-entity certificate may follow in the path.

   Where it appears, the pathLenConstraint field MUST be greater than or

   equal to zero. Where pathLenConstraint does not appear, there is no

   limit to the allowed length of the certification path.

 

   This extension MUST appear as a critical extension in all CA

   certificates.  This extension SHOULD NOT appear in end entity

   certificates.

 

   id-ce-basicConstraints OBJECT IDENTIFIER ::=  { id-ce 19 }

 

   BasicConstraints ::= SEQUENCE {

        cA                      BOOLEAN DEFAULT FALSE,

        pathLenConstraint       INTEGER (0..MAX) OPTIONAL }

 

4.2.1.11  Name Constraints

 

   The name constraints extension, which MUST be used only in a CA

   certificate, indicates a name space within which all subject names in

   subsequent certificates in a certification path shall be located.

   Restrictions may apply to the subject distinguished name or subject

   alternative names.  Restrictions apply only when the specified name

   form is present. If no name of the type is in the certificate, the

   certificate is acceptable.

 

   Restrictions are defined in terms of permitted or excluded name

   subtrees.  Any name matching a restriction in the excludedSubtrees

   field is invalid regardless of information appearing in the

   permittedSubtrees.  This extension MUST be critical.

 

   Within this profile, the minimum and maximum fields are not used with

   any name forms, thus minimum is always zero, and maximum is always

   absent.

 

 

 

 

 

Housley, et. al.            Standards Track                    [Page 35]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   For URIs, the constraint applies to the host part of the name. The

   constraint may specify a host or a domain.  Examples would be

   "foo.bar.com";  and ".xyz.com".  When the the constraint begins with

   a period, it may be expanded with one or more subdomains.  That is,

   the constraint ".xyz.com" is satisfied by both abc.xyz.com and

   abc.def.xyz.com.  However, the constraint ".xyz.com" is not satisfied

   by "xyz.com".  When the constraint does not begin with a period, it

   specifies a host.

 

   A name constraint for Internat mail addresses may specify a

   particular mailbox, all addresses at a particular host, or all

   mailboxes in a domain.  To indicate a particular mailbox, the

   constraint is the complete mail address.  For example, "root@xyz.com"

   indicates the root mailbox on the host "xyz.com". To indicate all

   Internet mail addresses on a particular host, the constraint is

   specified as the host name.  For example, the constraint "xyz.com" is

   satisfied by any mail address at the host "xyz.com". To specify any

   address within a domain, the constraint is specified with a leading

   period (as with URIs).  For example, ".xyz.com" indicates all the

   Internet mail addresses in the domain "xyz.com", but Internet mail

   addresses on the host "xyz.com".

 

   DNS name restrictions are expressed as foo.bar.com. Any subdomain

   satisfies the name constraint. For example, www.foo.bar.com would

   satisfy the constraint but bigfoo.bar.com would not.

 

   Legacy implementations exist where an RFC 822 name is embedded in the

   subject distinguished name in an attribute of type EmailAddress (see

   sec. 4.1.2.6). When rfc822 names are constrained, but the certificate

   does not include a subject alternative name, the rfc822 name

   constraint MUST be applied to the attribute of type EmailAddress in

   the subject distinguished name.  The ASN.1 syntax for EmailAddress

   and the corresponding OID are supplied in Appendix A and B.

 

   Restrictions of the form directoryName MUST be applied to the subject

   field in the certificate and to the subjectAltName extensions of type

   directoryName. Restrictions of the form x400Address MUST be applied

   to subjectAltName extensions of type x400Address.

 

   When applying restrictions of the form directoryName, an

   implementation MUST compare DN attributes.  At a minimum,

   implementations MUST perform the DN comparison rules specified in

   Section 4.1.2.4.  CAs issuing certificates with a restriction of the

   form directoryName SHOULD NOT rely on implementation of the full ISO

   DN name comparison algorithm.  This implies name restrictions shall

   be stated identically to the encoding used in the subject field or

   subjectAltName extension.

 

 

 

 

Housley, et. al.            Standards Track                    [Page 36]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   The syntax of iPAddress MUST be as described in section 4.2.1.7 with

   the following additions specifically for Name Constraints.  For IPv4

   addresses, the ipAddress field of generalName MUST contain eight (8)

   octets, encoded in the style of RFC 1519 (CIDR) to represent an

   address range.[RFC 1519]  For IPv6 addresses, the ipAddress field

   MUST contain 32 octets similarly encoded.  For example, a name

   constraint for "class C" subnet 10.9.8.0 shall be represented as the

   octets 0A 09 08 00 FF FF FF 00, representing the CIDR notation

   10.9.8.0/255.255.255.0.

 

   The syntax and semantics for name constraints for otherName,

   ediPartyName, and registeredID are not defined by this specification.

 

      id-ce-nameConstraints OBJECT IDENTIFIER ::=  { id-ce 30 }

 

      NameConstraints ::= SEQUENCE {

           permittedSubtrees       [0]     GeneralSubtrees OPTIONAL,

           excludedSubtrees        [1]     GeneralSubtrees OPTIONAL }

 

      GeneralSubtrees ::= SEQUENCE SIZE (1..MAX) OF GeneralSubtree

 

      GeneralSubtree ::= SEQUENCE {

           base                    GeneralName,

           minimum         [0]     BaseDistance DEFAULT 0,

           maximum         [1]     BaseDistance OPTIONAL }

 

      BaseDistance ::= INTEGER (0..MAX)

 

4.2.1.12  Policy Constraints

 

   The policy constraints extension can be used in certificates issued

   to CAs. The policy constraints extension constrains path validation

   in two ways. It can be used to prohibit policy mapping or require

   that each certificate in a path contain an acceptable policy

   identifier.

 

   If the inhibitPolicyMapping field is present, the value indicates the

   number of additional certificates that may appear in the path before

   policy mapping is no longer permitted.  For example, a value of one

   indicates that policy mapping may be processed in certificates issued

   by the subject of this certificate, but not in additional

   certificates in the path.

 

   If the requireExplicitPolicy field is present, subsequent

   certificates shall include an acceptable policy identifier. The value

   of requireExplicitPolicy indicates the number of additional

   certificates that may appear in the path before an explicit policy is

   required.  An acceptable policy identifier is the identifier of a

 

 

 

Housley, et. al.            Standards Track                    [Page 37]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   policy required by the user of the certification path or the

   identifier of a policy which has been declared equivalent through

   policy mapping.

 

   Conforming CAs MUST NOT issue certificates where policy constraints

   is a null sequence. That is, at least one of the inhibitPolicyMapping

   field or the requireExplicitPolicy field MUST be present. The

   behavior of clients that encounter a null policy constraints field is

   not addressed in this profile.

 

   This extension may be critical or non-critical.

 

   id-ce-policyConstraints OBJECT IDENTIFIER ::=  { id-ce 36 }

 

   PolicyConstraints ::= SEQUENCE {

        requireExplicitPolicy           [0] SkipCerts OPTIONAL,

        inhibitPolicyMapping            [1] SkipCerts OPTIONAL }

 

   SkipCerts ::= INTEGER (0..MAX)

 

4.2.1.13  Extended key usage field

 

   This field indicates one or more purposes for which the certified

   public key may be used, in addition to or in place of the basic

   purposes indicated in the key usage extension field.  This field is

   defined as follows:

 

   id-ce-extKeyUsage OBJECT IDENTIFIER ::= {id-ce 37}

 

   ExtKeyUsageSyntax ::= SEQUENCE SIZE (1..MAX) OF KeyPurposeId

 

   KeyPurposeId ::= OBJECT IDENTIFIER

 

   Key purposes may be defined by any organization with a need. Object

   identifiers used to identify key purposes shall be assigned in

   accordance with IANA or ITU-T Rec. X.660 | ISO/IEC/ITU 9834-1.

 

   This extension may, at the option of the certificate issuer, be

   either critical or non-critical.

 

   If the extension is flagged critical, then the certificate MUST be

   used only for one of the purposes indicated.

 

   If the extension is flagged non-critical, then it indicates the

   intended purpose or purposes of the key, and may be used in finding

   the correct key/certificate of an entity that has multiple

   keys/certificates. It is an advisory field and does not imply that

   usage of the key is restricted by the certification authority to the

 

 

 

Housley, et. al.            Standards Track                    [Page 38]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   purpose indicated. Certificate using applications may nevertheless

   require that a particular purpose be indicated in order for the

   certificate to be acceptable to that application.

 

   If a certificate contains both a critical key usage field and a

   critical extended key usage field, then both fields MUST be processed

   independently and the certificate MUST only be used for a purpose

   consistent with both fields.  If there is no purpose consistent with

   both fields, then the certificate MUST NOT be used for any purpose.

 

   The following key usage purposes are defined by this profile:

 

   id-kp OBJECT IDENTIFIER ::= { id-pkix 3 }

 

   id-kp-serverAuth              OBJECT IDENTIFIER ::=   {id-kp 1}

   -- TLS Web server authentication

   -- Key usage bits that may be consistent: digitalSignature,

   --                         keyEncipherment or keyAgreement

   --

   id-kp-clientAuth              OBJECT IDENTIFIER ::=   {id-kp 2}

   -- TLS Web client authentication

   -- Key usage bits that may be consistent: digitalSignature and/or

   --                            keyAgreement

   --

   id-kp-codeSigning             OBJECT IDENTIFIER ::=   {id-kp 3}

   -- Signing of downloadable executable code

   -- Key usage bits that may be consistent: digitalSignature

   --

   id-kp-emailProtection         OBJECT IDENTIFIER ::=   {id-kp 4}

   -- E-mail protection

   -- Key usage bits that may be consistent: digitalSignature,

   --                         nonRepudiation, and/or (keyEncipherment

   --                         or keyAgreement)

   --

   id-kp-timeStamping    OBJECT IDENTIFIER ::= { id-kp 8 }

   -- Binding the hash of an object to a time from an agreed-upon time

   -- source. Key usage bits that may be consistent: digitalSignature,

   --                         nonRepudiation

 

4.2.1.14  CRL Distribution Points

 

   The CRL distribution points extension identifies how CRL information

   is obtained.  The extension SHOULD be non-critical, but this profile

   recommends support for this extension by CAs and applications.

   Further discussion of CRL management is contained in section 5.

 

 

 

 

 

 

Housley, et. al.            Standards Track                    [Page 39]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   If the cRLDistributionPoints extension contains a

   DistributionPointName of type URI, the following semantics MUST be

   assumed: the URI is a pointer to the current CRL for the associated

   reasons and will be issued by the associated cRLIssuer.  The expected

   values for the URI are those defined in 4.2.1.7. Processing rules for

   other values are not defined by this specification.  If the

   distributionPoint omits reasons, the CRL MUST include revocations for

   all reasons. If the distributionPoint omits cRLIssuer, the CRL MUST

   be issued by the CA that issued the certificate.

 

   id-ce-cRLDistributionPoints OBJECT IDENTIFIER ::=  { id-ce 31 }

 

   cRLDistributionPoints ::= {

        CRLDistPointsSyntax }

 

   CRLDistPointsSyntax ::= SEQUENCE SIZE (1..MAX) OF DistributionPoint

 

   DistributionPoint ::= SEQUENCE {

        distributionPoint       [0]     DistributionPointName OPTIONAL,

        reasons                 [1]     ReasonFlags OPTIONAL,

        cRLIssuer               [2]     GeneralNames OPTIONAL }

 

   DistributionPointName ::= CHOICE {

        fullName                [0]     GeneralNames,

        nameRelativeToCRLIssuer [1]     RelativeDistinguishedName }

 

   ReasonFlags ::= BIT STRING {

        unused                  (0),

        keyCompromise           (1),

        cACompromise            (2),

        affiliationChanged      (3),

        superseded              (4),

        cessationOfOperation    (5),

        certificateHold         (6) }

 

4.2.2  Private Internet Extensions

 

   This section defines one new extension for use in the Internet Public

   Key Infrastructure.  This extension may be used to direct

   applications to identify an on-line validation service supporting the

   issuing CA.  As the information may be available in multiple forms,

   each extension is a sequence of IA5String values, each of which

   represents a URI.  The URI implicitly specifies the location and

   format of the information and the method for obtaining the

   information.

 

 

 

 

 

 

Housley, et. al.            Standards Track                    [Page 40]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   An object identifier is defined for the private extension.  The

   object identifier associated with the private extension is defined

   under the arc id-pe within the id-pkix name space.  Any future

   extensions defined for the Internet PKI will also be defined under

   the arc id-pe.

 

      id-pkix  OBJECT IDENTIFIER  ::=

               { iso(1) identified-organization(3) dod(6) internet(1)

                       security(5) mechanisms(5) pkix(7) }

 

      id-pe  OBJECT IDENTIFIER  ::=  { id-pkix 1 }

 

4.2.2.1  Authority Information Access

 

   The authority information access extension indicates how to access CA

   information and services for the issuer of the certificate in which

   the extension appears. Information and services may include on-line

   validation services and CA policy data.  (The location of CRLs is not

   specified in this extension; that information is provided by the

   cRLDistributionPoints extension.)  This extension may be included in

   subject or CA certificates, and it MUST be non-critical.

 

   id-pe-authorityInfoAccess OBJECT IDENTIFIER ::= { id-pe 1 }

 

   AuthorityInfoAccessSyntax  ::=

           SEQUENCE SIZE (1..MAX) OF AccessDescription

 

   AccessDescription  ::=  SEQUENCE {

           accessMethod          OBJECT IDENTIFIER,

           accessLocation        GeneralName  }

 

   id-ad OBJECT IDENTIFIER ::= { id-pkix 48 }

 

   id-ad-caIssuers OBJECT IDENTIFIER ::= { id-ad 2 }

 

   Each entry in the sequence AuthorityInfoAccessSyntax describes the

   format and location of additional information about the CA who issued

   the certificate in which this extension appears.  The type and format

   of the information is specified by the accessMethod field; the

   accessLocation field specifies the location of the information.  The

   retrieval mechanism may be implied by the accessMethod or specified

   by accessLocation.

 

   This profile defines one OID for accessMethod. The id-ad-caIssuers

   OID is used when the additional information lists CAs that have

   issued certificates superior to the CA that issued the certificate

 

 

 

 

 

Housley, et. al.            Standards Track                    [Page 41]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   containing this extension.  The referenced CA Issuers description is

   intended to aid certificate users in the selection of a certification

   path that terminates at a point trusted by the certificate user.

 

   When id-ad-caIssuers appears as accessInfoType, the accessLocation

   field describes the referenced description server and the access

   protocol to obtain the referenced description.  The accessLocation

   field is defined as a GeneralName, which can take several forms.

   Where the information is available via http, ftp, or ldap,

   accessLocation MUST be a uniformResourceIdentifier.  Where the

   information is available via the directory access protocol (dap),

   accessLocation MUST be a directoryName. When the information is

   available via electronic mail, accessLocation MUST be an rfc822Name.

   The semantics of other name forms of accessLocation (when

   accessMethod is id-ad-caIssuers) are not defined by this

   specification.

 

   Additional access descriptors may be defined in other PKIX

   specifications.

 

5  CRL and CRL Extensions Profile

 

   As described above, one goal of this X.509 v2 CRL profile is to

   foster the creation of an interoperable and reusable Internet PKI.

   To achieve this goal, guidelines for the use of extensions are

   specified, and some assumptions are made about the nature of

   information included in the CRL.

 

   CRLs may be used in a wide range of applications and environments

   covering a broad spectrum of interoperability goals and an even

   broader spectrum of operational and assurance requirements.  This

   profile establishes a common baseline for generic applications

   requiring broad interoperability.  The profile defines a baseline set

   of information that can be expected in every CRL.  Also, the profile

   defines common locations within the CRL for frequently used

   attributes as well as common representations for these attributes.

 

   This profile does not define any private Internet CRL extensions or

   CRL entry extensions.

 

   Environments with additional or special purpose requirements may

   build on this profile or may replace it.

 

   Conforming CAs are not required to issue CRLs if other revocation or

   certificate status mechanisms are provided.  Conforming CAs that

   issue CRLs MUST issue version 2 CRLs, and CAs MUST include the date

   by which the next CRL will be issued in the nextUpdate field (see

 

 

 

 

Housley, et. al.            Standards Track                    [Page 42]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   sec. 5.1.2.5), the CRL number extension (see sec. 5.2.3) and the

   authority key identifier extension (see sec. 5.2.1).  Conforming

   applications are required to process version 1 and 2 CRLs.

 

5.1  CRL Fields

 

   The X.509 v2 CRL syntax is as follows.  For signature calculation,

   the data that is to be signed is ASN.1 DER encoded.  ASN.1 DER

   encoding is a tag, length, value encoding system for each element.

 

   CertificateList  ::=  SEQUENCE  {

        tbsCertList          TBSCertList,

        signatureAlgorithm   AlgorithmIdentifier,

        signatureValue       BIT STRING  }

 

   TBSCertList  ::=  SEQUENCE  {

        version                 Version OPTIONAL,

                                     -- if present, shall be v2

        signature               AlgorithmIdentifier,

        issuer                  Name,

        thisUpdate              Time,

        nextUpdate              Time OPTIONAL,

        revokedCertificates     SEQUENCE OF SEQUENCE  {

             userCertificate         CertificateSerialNumber,

             revocationDate          Time,

             crlEntryExtensions      Extensions OPTIONAL

                                           -- if present, shall be v2

                                  }  OPTIONAL,

        crlExtensions           [0]  EXPLICIT Extensions OPTIONAL

                                           -- if present, shall be v2

                                  }

 

   -- Version, Time, CertificateSerialNumber, and Extensions

   -- are all defined in the ASN.1 in section 4.1

 

   -- AlgorithmIdentifier is defined in section 4.1.1.2

 

   The following items describe the use of the X.509 v2 CRL in the

   Internet PKI.

 

5.1.1  CertificateList Fields

 

   The CertificateList is a SEQUENCE of three required fields. The

   fields are described in detail in the following subsections.

 

 

 

 

 

 

 

Housley, et. al.            Standards Track                    [Page 43]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

5.1.1.1  tbsCertList

 

   The first field in the sequence is the tbsCertList.  This field is

   itself a sequence containing the name of the issuer, issue date,

   issue date of the next list, the list of revoked certificates, and

   optional CRL extensions.  Further, each entry on the revoked

   certificate list is defined by a sequence of user certificate serial

   number, revocation date, and optional CRL entry extensions.

 

5.1.1.2  signatureAlgorithm

 

   The signatureAlgorithm field contains the algorithm identifier for

   the algorithm used by the CA to sign the CertificateList.  The field

   is of type AlgorithmIdentifier, which is defined in section 4.1.1.2.

   Section 7.2 lists the supported algorithms for this specification.

   Conforming CAs MUST use the algorithm identifiers presented in

   section 7.2 when signing with a supported signature algorithm.

 

   This field MUST contain the same algorithm identifier as the

   signature field in the sequence tbsCertList (see sec. 5.1.2.2).

 

5.1.1.3  signatureValue

 

   The signatureValue field contains a digital signature computed upon

   the ASN.1 DER encoded tbsCertList.  The ASN.1 DER encoded tbsCertList

   is used as the input to the signature function. This signature value

   is then ASN.1 encoded as a BIT STRING and included in the CRL's

   signatureValue field. The details of this process are specified for

   each of the supported algorithms in section 7.2.

 

5.1.2  Certificate List "To Be Signed"

 

   The certificate list to be signed, or TBSCertList, is a SEQUENCE of

   required and optional fields.  The required fields identify the CRL

   issuer, the algorithm used to sign the CRL, the date and time the CRL

   was issued, and the date and time by which the CA will issue the next

   CRL.

 

   Optional fields include lists of revoked certificates and CRL

   extensions.  The revoked certificate list is optional to support the

   case where a CA has not revoked any unexpired certificates that it

   has issued.  The profile requires conforming CAs to use the CRL

   extension cRLNumber in all CRLs issued.

 

 

 

 

 

 

 

 

Housley, et. al.            Standards Track                    [Page 44]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

5.1.2.1  Version

 

   This optional field describes the version of the encoded CRL.  When

   extensions are used, as required by this profile, this field MUST be

   present and MUST specify version 2 (the integer value is 1).

 

5.1.2.2  Signature

 

   This field contains the algorithm identifier for the algorithm used

   to sign the CRL.  Section 7.2 lists OIDs for the most popular

   signature algorithms used in the Internet PKI.

 

   This field MUST contain the same algorithm identifier as the

   signatureAlgorithm field in the sequence CertificateList (see section

   5.1.1.2).

 

5.1.2.3  Issuer Name

 

   The issuer name identifies the entity who has signed and issued the

   CRL.  The issuer identity is carried in the issuer name field.

   Alternative name forms may also appear in the issuerAltName extension

   (see sec. 5.2.2).  The issuer name field MUST contain an X.500

   distinguished name (DN).  The issuer name field is defined as the

   X.501 type Name, and MUST follow the encoding rules for the issuer

   name field in the certificate (see sec. 4.1.2.4).

 

5.1.2.4  This Update

 

   This field indicates the issue date of this CRL. ThisUpdate may be

   encoded as UTCTime or GeneralizedTime.

 

   CAs conforming to this profile that issue CRLs MUST encode thisUpdate

   as UTCTime for dates through the year 2049. CAs conforming to this

   profile that issue CRLs MUST encode thisUpdate as GeneralizedTime for

   dates in the year 2050 or later.

 

   Where encoded as UTCTime, thisUpdate MUST be specified and

   interpreted as defined in section 4.1.2.5.1.  Where encoded as

   GeneralizedTime, thisUpdate MUST be specified and interpreted as

   defined in section 4.1.2.5.2.

 

5.1.2.5  Next Update

 

   This field indicates the date by which the next CRL will be issued.

   The next CRL could be issued before the indicated date, but it will

   not be issued any later than the indicated date. CAs SHOULD issue

   CRLs with a nextUpdate time equal to or later than all previous CRLs.

   nextUpdate may be encoded as UTCTime or GeneralizedTime.

 

 

 

Housley, et. al.            Standards Track                    [Page 45]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   This profile requires inclusion of nextUpdate in all CRLs issued by

   conforming CAs. Note that the ASN.1 syntax of TBSCertList describes

   this field as OPTIONAL, which is consistent with the ASN.1 structure

   defined in [X.509]. The behavior of clients processing CRLs which

   omit nextUpdate is not specified by this profile.

 

   CAs conforming to this profile that issue CRLs MUST encode nextUpdate

   as UTCTime for dates through the year 2049. CAs conforming to this

   profile that issue CRLs MUST encode nextUpdate as GeneralizedTime for

   dates in the year 2050 or later.

 

   Where encoded as UTCTime, nextUpdate MUST be specified and

   interpreted as defined in section 4.1.2.5.1.  Where encoded as

   GeneralizedTime, nextUpdate MUST be specified and interpreted as

   defined in section 4.1.2.5.2.

 

5.1.2.6  Revoked Certificates

 

   Revoked certificates are listed.  The revoked certificates are named

   by their serial numbers.  Certificates revoked by the CA are uniquely

   identified by the certificate serial number.  The date on which the

   revocation occurred is specified.  The time for revocationDate MUST

   be expressed as described in section 5.1.2.4. Additional information

   may be supplied in CRL entry extensions; CRL entry extensions are

   discussed in section 5.3.

 

5.1.2.7  Extensions

 

   This field may only appear if the version is 2 (see sec. 5.1.2.1).

   If present, this field is a SEQUENCE of one or more CRL extensions.

   CRL extensions are discussed in section 5.2.

 

5.2  CRL Extensions

 

   The extensions defined by ANSI X9 and ISO/IEC/ITU for X.509 v2 CRLs

   [X.509] [X9.55] provide methods for associating additional attributes

   with CRLs.  The X.509 v2 CRL format also allows communities to define

   private extensions to carry information unique to those communities.

   Each extension in a CRL may be designated as critical or non-

   critical.  A CRL validation MUST fail if it encounters a critical

   extension which it does not know how to process.  However, an

   unrecognized non-critical extension may be ignored.  The following

   subsections present those extensions used within Internet CRLs.

   Communities may elect to include extensions in CRLs which are not

   defined in this specification. However, caution should be exercised

   in adopting any critical extensions in CRLs which might be used in a

   general context.

 

 

 

 

Housley, et. al.            Standards Track                    [Page 46]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   Conforming CAs that issue CRLs are required to include the authority

   key identifier (see sec. 5.2.1) and the CRL number (see sec. 5.2.3)

   extensions in all CRLs issued.

 

5.2.1  Authority Key Identifier

 

   The authority key identifier extension provides a means of

   identifying the public key corresponding to the private key used to

   sign a CRL.  The identification can be based on either the key

   identifier (the subject key identifier in the CRL signer's

   certificate) or on the issuer name and serial number. This extension

   is especially useful where an issuer has more than one signing key,

   either due to multiple concurrent key pairs or due to changeover.

 

   Conforming CAs MUST use the key identifier method, and MUST include

   this extension in all CRLs issued.

 

   The syntax for this CRL extension is defined in section 4.2.1.1.

 

5.2.2  Issuer Alternative Name

 

   The issuer alternative names extension allows additional identities

   to be associated with the issuer of the CRL.  Defined options include

   an rfc822 name (electronic mail address), a DNS name, an IP address,

   and a URI.  Multiple instances of a name and multiple name forms may

   be included.  Whenever such identities are used, the issuer

   alternative name extension MUST be used.

 

   The issuerAltName extension SHOULD NOT be marked critical.

 

   The OID and syntax for this CRL extension are defined in section

   4.2.1.8.

 

5.2.3  CRL Number

 

   The CRL number is a non-critical CRL extension which conveys a

   monotonically increasing sequence number for each CRL issued by a CA.

   This extension allows users to easily determine when a particular CRL

   supersedes another CRL.  CAs conforming to this profile MUST include

   this extension in all CRLs.

 

   id-ce-cRLNumber OBJECT IDENTIFIER ::= { id-ce 20 }

 

   cRLNumber ::= INTEGER (0..MAX)

 

 

 

 

 

 

 

Housley, et. al.            Standards Track                    [Page 47]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

5.2.4  Delta CRL Indicator

 

   The delta CRL indicator is a critical CRL extension that identifies a

   delta-CRL.  The use of delta-CRLs can significantly improve

   processing time for applications which store revocation information

   in a format other than the CRL structure.  This allows changes to be

   added to the local database while ignoring unchanged information that

   is already in the local database.

 

   When a delta-CRL is issued, the CAs MUST also issue a complete CRL.

 

   The value of BaseCRLNumber identifies the CRL number of the base CRL

   that was used as the starting point in the generation of this delta-

   CRL.  The delta-CRL contains the changes between the base CRL and the

   current CRL issued along with the delta-CRL.  It is the decision of a

   CA as to whether to provide delta-CRLs.  Again, a delta-CRL MUST NOT

   be issued without a corresponding complete CRL.  The value of

   CRLNumber for both the delta-CRL and the corresponding complete CRL

   MUST be identical.

 

   A CRL user constructing a locally held CRL from delta-CRLs MUST

   consider the constructed CRL incomplete and unusable if the CRLNumber

   of the received delta-CRL is more than one greater than the CRLnumber

   of the delta-CRL last processed.

 

   id-ce-deltaCRLIndicator OBJECT IDENTIFIER ::= { id-ce 27 }

 

   deltaCRLIndicator ::= BaseCRLNumber

 

   BaseCRLNumber ::= CRLNumber

 

5.2.5  Issuing Distribution Point

 

   The issuing distribution point is a critical CRL extension that

   identifies the CRL distribution point for a particular CRL, and it

   indicates whether the CRL covers revocation for end entity

   certificates only, CA  certificates only, or a limitied set of reason

   codes.  Although the extension is critical, conforming

   implementations are not required to support this extension.

 

   The CRL is signed using the CA's private key.  CRL Distribution

   Points do not have their own key pairs.  If the CRL is stored in the

   X.500 Directory, it is stored in the Directory entry corresponding to

   the CRL distribution point, which may be different than the Directory

   entry of the CA.

 

 

 

 

 

 

Housley, et. al.            Standards Track                    [Page 48]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   The reason codes associated with a distribution point shall be

   specified in onlySomeReasons. If onlySomeReasons does not appear, the

   distribution point shall contain revocations for all reason codes.

   CAs may use CRL distribution points to partition the CRL on the basis

   of compromise and routine revocation.  In this case, the revocations

   with reason code keyCompromise (1) and cACompromise (2) appear in one

   distribution point, and the revocations with other reason codes

   appear in another distribution point.

 

   Where the issuingDistributionPoint extension contains a URL, the

   following semantics MUST be assumed: the object is a pointer to the

   most current CRL issued by this CA.  The URI schemes ftp, http,

   mailto [RFC1738] and ldap [RFC1778] are defined for this purpose.

   The URI MUST be an absolute, not relative, pathname and MUST specify

   the host.

 

   id-ce-issuingDistributionPoint OBJECT IDENTIFIER ::= { id-ce 28 }

 

   issuingDistributionPoint ::= SEQUENCE {

        distributionPoint       [0] DistributionPointName OPTIONAL,

        onlyContainsUserCerts   [1] BOOLEAN DEFAULT FALSE,

        onlyContainsCACerts     [2] BOOLEAN DEFAULT FALSE,

        onlySomeReasons         [3] ReasonFlags OPTIONAL,

        indirectCRL             [4] BOOLEAN DEFAULT FALSE }

 

5.3  CRL Entry Extensions

 

   The CRL entry extensions already defined by ANSI X9 and ISO/IEC/ITU

   for X.509 v2 CRLs provide methods for associating additional

   attributes with CRL entries [X.509] [X9.55].  The X.509 v2 CRL format

   also allows communities to define private CRL entry extensions to

   carry information unique to those communities.  Each extension in a

   CRL entry may be designated as critical or non-critical.  A CRL

   validation MUST fail if it encounters a critical CRL entry extension

   which it does not know how to process.  However, an unrecognized

   non-critical CRL entry extension may be ignored.  The following

   subsections present recommended extensions used within Internet CRL

   entries and standard locations for information.  Communities may

   elect to use additional CRL entry extensions; however, caution should

   be exercised in adopting any critical extensions in CRL entries which

   might be used in a general context.

 

   All CRL entry extensions used in this specification are non-critical.

   Support for these extensions is optional for conforming CAs and

   applications.  However, CAs that issue CRLs SHOULD include reason

   codes (see sec. 5.3.1) and invalidity dates (see sec. 5.3.3) whenever

   this information is available.

 

 

 

 

Housley, et. al.            Standards Track                    [Page 49]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

5.3.1  Reason Code

 

   The reasonCode is a non-critical CRL entry extension that identifies

   the reason for the certificate revocation. CAs are strongly

   encouraged to include meaningful reason codes in CRL entries;

   however, the reason code CRL entry extension SHOULD be absent instead

   of using the unspecified (0) reasonCode value.

 

   id-ce-cRLReason OBJECT IDENTIFIER ::= { id-ce 21 }

 

   -- reasonCode ::= { CRLReason }

 

   CRLReason ::= ENUMERATED {

        unspecified             (0),

        keyCompromise           (1),

        cACompromise            (2),

        affiliationChanged      (3),

        superseded              (4),

        cessationOfOperation    (5),

        certificateHold         (6),

        removeFromCRL           (8) }

 

5.3.2  Hold Instruction Code

 

   The hold instruction code is a non-critical CRL entry extension that

   provides a registered instruction identifier which indicates the

   action to be taken after encountering a certificate that has been

   placed on hold.

 

   id-ce-holdInstructionCode OBJECT IDENTIFIER ::= { id-ce 23 }

 

   holdInstructionCode ::= OBJECT IDENTIFIER

 

   The following instruction codes have been defined.  Conforming

   applications that process this extension MUST recognize the following

   instruction codes.

 

   holdInstruction    OBJECT IDENTIFIER ::=

                    { iso(1) member-body(2) us(840) x9-57(10040) 2 }

 

   id-holdinstruction-none   OBJECT IDENTIFIER ::= {holdInstruction 1}

   id-holdinstruction-callissuer

                             OBJECT IDENTIFIER ::= {holdInstruction 2}

   id-holdinstruction-reject OBJECT IDENTIFIER ::= {holdInstruction 3}

 

   Conforming applications which encounter an id-holdinstruction-

   callissuer MUST call the certificate issuer or reject the

   certificate.  Conforming applications which encounter an id-

 

 

 

Housley, et. al.            Standards Track                    [Page 50]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   holdinstruction-reject MUST reject the certificate. The hold

   instruction id-holdinstruction-none is semantically equivalent to the

   absence of a holdInstructionCode, and its use is strongly deprecated

   for the Internet PKI.

 

5.3.3  Invalidity Date

 

   The invalidity date is a non-critical CRL entry extension that

   provides the date on which it is known or suspected that the private

   key was compromised or that the certificate otherwise became invalid.

   This date may be earlier than the revocation date in the CRL entry,

   which is the date at which the CA processed the revocation. When a

   revocation is first posted by a CA in a CRL, the invalidity date may

   precede the date of issue of earlier CRLs, but the revocation date

   SHOULD NOT precede the date of issue of earlier CRLs.  Whenever this

   information is available, CAs are strongly encouraged to share it

   with CRL users.

 

   The GeneralizedTime values included in this field MUST be expressed

   in Greenwich Mean Time (Zulu), and MUST be specified and interpreted

   as defined in section 4.1.2.5.2.

 

   id-ce-invalidityDate OBJECT IDENTIFIER ::= { id-ce 24 }

 

   invalidityDate ::=  GeneralizedTime

 

5.3.4  Certificate Issuer

 

   This CRL entry extension identifies the certificate issuer associated

   with an entry in an indirect CRL, i.e. a CRL that has the indirectCRL

   indicator set in its issuing distribution point extension. If this

   extension is not present on the first entry in an indirect CRL, the

   certificate issuer defaults to the CRL issuer. On subsequent entries

   in an indirect CRL, if this extension is not present, the certificate

   issuer for the entry is the same as that for the preceding entry.

   This field is defined as follows:

 

   id-ce-certificateIssuer   OBJECT IDENTIFIER ::= { id-ce 29 }

 

   certificateIssuer ::=     GeneralNames

 

   If used by conforming CAs that issue CRLs, this extension is always

   critical.  If an implementation ignored this extension it could not

   correctly attribute CRL entries to certificates.  This specification

   RECOMMENDS that implementations recognize this extension.

 

 

 

 

 

 

Housley, et. al.            Standards Track                    [Page 51]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

6  Certification Path Validation

 

   Certification path validation procedures for the Internet PKI are

   based on section 12.4.3 of [X.509].  Certification path processing

   verifies the binding between the subject distinguished name and/or

   subject alternative name and subject public key.  The binding is

   limited by constraints which are specified in the certificates which

   comprise the path. The basic constraints and policy constraints

   extensions allow the certification path processing logic to automate

   the decision making process.

 

   This section describes an algorithm for validating certification

   paths.  Conforming implementations of this specification are not

   required to implement this algorithm, but MUST be functionally

   equivalent to the external behavior resulting from this procedure.

   Any algorithm may be used by a particular implementation so long as

   it derives the correct result.

 

   In section 6.1, the text describes basic path validation. This text

   assumes that all valid paths begin with certificates issued by a

   single "most-trusted CA". The algorithm requires the public key of

   the CA, the CA's name, the validity period of the public key, and any

   constraints upon the set of paths which may be validated using this

   key.

 

   The "most-trusted CA" is a matter of policy: it could be a root CA in

   a hierarchical PKI; the CA that issued the verifier's own

   certificate(s); or any other CA in a network PKI.  The path

   validation procedure is the same regardless of the choice of "most-

   trusted CA."

 

   section 6.2 describes extensions to the basic path validation

   algorithm. Two specific cases are discussed: the case where paths may

   begin with one of several trusted CAs; and where compatibility with

   the PEM architecture is required.

 

6.1 Basic Path Validation

 

   The text assumes that the trusted public key (and related

   information) is contained in a "self-signed" certificate. This

   simplifies the description of the path processing procedure.  Note

   that the signature on the self-signed certificate does not provide

   any security services.  The trusted public key (and related

   information) may be obtained in other formats; the information is

   trusted because of other procedures used to obtain and protect it.

 

 

 

 

 

 

Housley, et. al.            Standards Track                    [Page 52]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   The goal of path validation is to verify the binding between a

   subject distinguished name or subject alternative name and subject

   public key, as represented in the "end entity" certificate, based on

   the public key of the "most-trusted CA".  This requires obtaining a

   sequence of certificates that support that binding.  The procedures

   performed to obtain this sequence is outside the scope of this

   section.

 

   The following text also assumes that certificates do not use subject

   or unique identifier fields or private critical extensions, as

   recommended within this profile.  However, if these components appear

   in certificates, they MUST be processed.  Finally, policy qualifiers

   are also neglected for the sake of clarity.

 

   A certification path is a sequence of n certificates where:

 

      * for all x in {1,(n-1)}, the subject of certificate x is the

      issuer of certificate x+1.

      * certificate x=1 is the the self-signed certificate, and

      * certificate x=n is the end entity certificate.

 

   This section assumes the following inputs are provided to the path

   processing logic:

 

      (a)  a certification path of length n;

 

      (b)  a set of initial policy identifiers (each comprising a

      sequence of policy element identifiers), which identifies one or

      more certificate policies, any one of which would be acceptable

      for the purposes of certification path processing, or the special

      value "any-policy";

 

      (c)  the current date/time (if not available internally to the

      certification path processing module); and

 

      (d)  the time, T, for which the validity of the path should be

      determined.  (This may be the current date/time, or some point in

      the past.)

 

   From the inputs, the procedure intializes five state variables:

 

      (a)  acceptable policy set:  A set of certificate policy

      identifiers comprising the policy or policies recognized by the

      public key user together with policies deemed equivalent through

      policy mapping. The initial value of the acceptable policy set is

      the special value "any-policy".

 

 

 

 

 

Housley, et. al.            Standards Track                    [Page 53]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

      (b)  constrained subtrees:  A set of root names defining a set of

      subtrees within which all subject names in subsequent certificates

      in the certification path shall fall. The initial value is

      "unbounded".

 

      (c)  excluded subtrees:  A set of root names defining a set of

      subtrees within which no subject name in subsequent certificates

      in the certification path may fall. The initial value is "empty".

 

      (d)  explicit policy: an integer which indicates if an explicit

      policy identifier is required. The integer indicates the first

      certificate in the path where this requirement is imposed. Once

      set, this variable may be decreased, but may not be increased.

      (That is, if a certificate in the path requires explicit policy

      identifiers, a later certificate can not remove this requirement.)

      The initial value is n+1.

 

      (e)  policy mapping: an integer which indicates if policy mapping

      is permitted.  The integer indicates the last certificate on which

      policy mapping may be applied.  Once set, this variable may be

      decreased, but may not be increased. (That is, if a certificate in

      the path specifies policy mapping is not permitted, it can not be

      overriden by a later certificate.) The initial value is n+1.

 

   The actions performed by the path processing software for each

   certificate i=1 through n are described below.  The self-signed

   certificate is certificate i=1, the end entity certificate is i=n.

   The processing is performed sequentially, so that processing

   certificate i affects the state variables for processing certificate

   (i+1). Note that actions (h) through (m) are not applied to the end

   entity certificate (certificate n).

 

   The path processing actions to be performed are:

 

      (a)  Verify the basic certificate information, including:

 

         (1) the certificate was signed using the subject public key

         from certificate i-1 (in the special case i=1, this step may be

         omitted; if not, use the subject public key from the same

         certificate),

 

         (2) the certificate validity period includes time T,

 

         (3) the certificate had not been revoked at time T and is not

         currently on hold status that commenced before time T, (this

         may be determined by obtaining the appropriate CRL or status

         information, or by out-of-band mechanisms), and

 

 

 

 

Housley, et. al.            Standards Track                    [Page 54]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

         (4) the subject and issuer names chain correctly (that is, the

         issuer of this certificate was the subject of the previous

         certificate.)

 

      (b)  Verify that the subject name and subjectAltName extension

      (critical or noncritical) is consistent with the constrained

      subtrees state variables.

 

      (c)  Verify that the subject name and subjectAltName extension

      (critical or noncritical) is consistent with the excluded subtrees

      state variables.

 

      (d)  Verify that policy information is consistent with the initial

      policy set:

 

         (1) if the explicit policy state variable is less than or equal

         to i, a policy identifier in the certificate shall be in the

         initial policy set; and

 

         (2) if the policy mapping variable is less than or equal to i,

         the policy identifier may not be mapped.

 

      (e)  Verify that policy information is consistent with the

      acceptable policy set:

 

         (1) if the certificate policies extension is marked critical,

         the intersection of the policies extension and the acceptable

         policy set shall be non-null;

 

         (2) the acceptable policy set is assigned the resulting

         intersection as its new value.

 

      (g) Verify that the intersection of the acceptable policy set and

      the initial policy set is non-null.

 

      (h)  Recognize and process any other critical extension present in

      the certificate.

 

      (i) Verify that the certificate is a CA certificate (as specified

      in a basicConstraints extension or as verified out-of-band).

 

      (j)  If permittedSubtrees is present in the certificate, set the

      constrained subtrees state variable to the intersection of its

      previous value and the value indicated in the extension field.

 

      (k)  If excludedSubtrees is present in the certificate, set the

      excluded subtrees state variable to the union of its previous

      value and the value indicated in the extension field.

 

 

 

Housley, et. al.            Standards Track                    [Page 55]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

      (l)  If a policy constraints extension is included in the

      certificate, modify the explicit policy and policy mapping state

      variables as follows:

 

         (1) If requireExplicitPolicy is present and has value r, the

         explicit policy state variable is set to the minimum of its

         current value and the sum of r and i (the current certificate

         in the sequence).

 

         (2) If inhibitPolicyMapping is present and has value q, the

         policy mapping state variable is set to the minimum of its

         current value and the sum of q and i (the current certificate

         in the sequence).

 

      (m) If a key usage extension is marked critical, ensure the

      keyCertSign bit is set.

 

   If any one of the above checks fail, the procedure terminates,

   returning a failure indication and an appropriate reason.  If none of

   the above checks fail on the end-entity certificate, the procedure

   terminates, returning a success indication together with the set of

   all policy qualifier values encountered in the set of certificates.

 

6.2 Extending Path Validation

 

   The path validation algorithm presented in 6.1 is based on several

   simplifying assumptions (e.g., a single trusted CA that starts all

   valid paths). This algorithm may be extended for cases where the

   assumptions do not hold.

 

   This procedure may be extended for multiple trusted CAs by providing

   a set of self-signed certificates to the validation module.  In this

   case, a valid path could begin with any one of the self-signed

   certificates.  Limitations in the trust paths for any particular key

   may be incorporated into the self-signed certificate's extensions. In

   this way, the self-signed certificates permit the path validation

   module to automatically incorporate local security policy and

   requirements.

 

   It is also possible to specify an extended version of the above

   certification path processing procedure which results in default

   behavior identical to the rules of PEM [RFC 1422].  In this extended

   version, additional inputs to the procedure are a list of one or more

   Policy Certification Authorities (PCAs) names and an indicator of the

   position in the certification path where the PCA is expected.  At the

   nominated PCA position, the CA name is compared against this list.

   If a recognized PCA name is found, then a constraint of

   SubordinateToCA is implicitly assumed for the remainder of the

 

 

 

Housley, et. al.            Standards Track                    [Page 56]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   certification path and processing continues.  If no valid PCA name is

   found, and if the certification path cannot be validated on the basis

   of identified policies, then the certification path is considered

   invalid.

 

7  Algorithm Support

 

   This section describes cryptographic algorithms which may be used

   with this profile.  The section describes one-way hash functions and

   digital signature algorithms which may be used to sign certificates

   and CRLs, and identifies OIDs for public keys contained in a

   certificate.

 

   Conforming CAs and applications are not required to support the

   algorithms or algorithm identifiers described in this section.

   However, conforming CAs and applications that use the algorithms

   identified here MUST support them as specified.

 

7.1  One-way Hash Functions

 

   This section identifies one-way hash functions for use in the

   Internet PKI.  One-way hash functions are also called message digest

   algorithms. SHA-1 is the preferred one-way hash function for the

   Internet PKI.  However, PEM uses MD2 for certificates [RFC 1422] [RFC

   1423] and MD5 is used in other legacy applications.  For this reason,

   MD2 and MD5 are included in this profile.

 

7.1.1  MD2 One-way Hash Function

 

   MD2 was developed by Ron Rivest for RSA Data Security. RSA Data

   Security has not placed the MD2 algorithm in the public domain.

   Rather, RSA Data Security has granted license to use MD2 for non-

   commercial Internet Privacy-Enhanced Mail.  For this reason, MD2 may

   continue to be used with PEM certificates, but SHA-1 is preferred.

   MD2 produces a 128-bit "hash" of the input.  MD2 is fully described

   in RFC 1319 [RFC 1319].

 

   At the Selected Areas in Cryptography '95 conference in May 1995,

   Rogier and Chauvaud presented an attack on MD2 that can nearly find

   collisions [RC95].  Collisions occur when one can find two different

   messages that generate the same message digest.  A checksum operation

   in MD2 is the only remaining obstacle to the success of the attack.

   For this reason, the use of MD2 for new applications is discouraged.

   It is still reasonable to use MD2 to verify existing signatures, as

   the ability to find collisions in MD2 does not enable an attacker to

   find new messages having a previously computed hash value.

 

 

 

 

 

Housley, et. al.            Standards Track                    [Page 57]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

7.1.2  MD5 One-way Hash Function

 

   MD5 was developed by Ron Rivest for RSA Data Security. RSA Data

   Security has placed the MD5 algorithm in the public domain.  MD5

   produces a 128-bit "hash" of the input.  MD5 is fully described in

   RFC 1321 [RFC 1321].

 

   Den Boer and Bosselaers [DB94] have found pseudo-collisions for MD5,

   but there are no other known cryptanalytic results.  The use of MD5

   for new applications is discouraged.  It is still reasonable to use

   MD5 to verify existing signatures.

 

7.1.3  SHA-1 One-way Hash Function

 

   SHA-1 was developed by the U.S. Government.  SHA-1 produces a 160-bit

   "hash" of the input. SHA-1 is fully described in FIPS 180-1 [FIPS

   180-1].

 

   SHA-1 is the one-way hash function of choice for use with both the

   RSA and DSA signature algorithms (see sec. 7.2).

 

7.2  Signature Algorithms

 

   Certificates and CRLs described by this standard may be signed with

   any public key signature algorithm.  The certificate or CRL indicates

   the algorithm through an algorithm identifier which appears in the

   signatureAlgorithm field in a Certificate or CertificateList.  This

   algorithm identifier is an OID and has optionally associated

   parameters.  This section identifies algorithm identifiers and

   parameters that shall be used in the signatureAlgorithm field in a

   Certificate or CertificateList.

 

   RSA and DSA are the most popular signature algorithms used in the

   Internet.  Signature algorithms are always used in conjunction with a

   one-way hash function identified in section 7.1.

 

   The signature algorithm and one-way hash function used to sign a

   certificate or CRL is indicated by use of an algorithm identifier.

   An algorithm identifier is an OID, and may include associated

   parameters.  This section identifies OIDS for RSA and DSA.  The

   contents of the parameters component for each algorithm vary; details

   are provided for each algorithm.

 

   The data to be signed (e.g., the one-way hash function output value)

   is formatted for the signature algorithm to be used.  Then, a private

   key operation (e.g., RSA encryption) is performed to generate the

 

 

 

 

 

Housley, et. al.            Standards Track                    [Page 58]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   signature value.  This signature value is then ASN.1 encoded as a BIT

   STRING and included in the Certificate or CertificateList in the

   signature field.

 

7.2.1  RSA Signature Algorithm

 

   A patent statement regarding the RSA algorithm can be found at the

   end of this profile.

 

   The RSA algorithm is named for its inventors: Rivest, Shamir, and

   Adleman.  This profile includes three signature algorithms based on

   the RSA asymmetric encryption algorithm. The signature algorithms

   combine RSA with either the MD2, MD5, or the SHA-1 one-way hash

   functions.

 

   The signature algorithm with MD2 and the RSA encryption algorithm is

   defined in PKCS #1 [RFC 2313].  As defined in RFC 2313, the ASN.1 OID

   used to identify this signature algorithm is:

 

        md2WithRSAEncryption OBJECT IDENTIFIER  ::=  {

            iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)

            pkcs-1(1) 2  }

 

   The signature algorithm with MD5 and the RSA encryption algorithm is

   defined in PKCS #1 [RFC 2313].  As defined in RFC 2313, the ASN.1 OID

   used to identify this signature algorithm is:

 

        md5WithRSAEncryption OBJECT IDENTIFIER  ::=  {

            iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)

            pkcs-1(1) 4  }

 

   The signature algorithm with SHA-1 and the RSA encryption algorithm

   is implemented using the padding and encoding conventions described

   in PKCS #1 [RFC 2313]. The message digest is computed using the SHA-1

   hash algorithm.  The ASN.1 object identifier used to identify this

   signature algorithm is:

 

        sha-1WithRSAEncryption OBJECT IDENTIFIER  ::=  {

            iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)

            pkcs-1(1) 5  }

 

   When any of these three OIDs appears within the ASN.1 type

   AlgorithmIdentifier, the parameters component of that type shall be

   the ASN.1 type NULL.

 

   The RSA signature generation process and the encoding of the result

   is described in detail in RFC 2313.

 

 

 

 

Housley, et. al.            Standards Track                    [Page 59]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

7.2.2  DSA Signature Algorithm

 

   A patent statement regarding the DSA can be found at the end of this

   profile.

 

   The Digital Signature Algorithm (DSA) is also called the Digital

   Signature Standard (DSS).  DSA was developed by the U.S. Government,

   and DSA is used in conjunction with the the SHA-1 one-way hash

   function.  DSA is fully described in FIPS 186 [FIPS 186].  The ASN.1

   OIDs used to identify this signature algorithm are:

 

           id-dsa-with-sha1 ID  ::=  {

                   iso(1) member-body(2) us(840) x9-57 (10040)

                   x9cm(4) 3 }

 

   Where the id-dsa-with-sha1 algorithm identifier appears as the

   algorithm field in an AlgorithmIdentifier, the encoding shall omit

   the parameters field.  That is, the AlgorithmIdentifier shall be a

   SEQUENCE of one component - the OBJECT IDENTIFIER id-dsa-with-sha1.

 

   The DSA parameters in the subjectPublicKeyInfo field of the

   certificate of the issuer shall apply to the verification of the

   signature.

 

   When signing, the DSA algorithm generates two values.  These values

   are commonly referred to as r and s.  To easily transfer these two

   values as one signature, they shall be ASN.1 encoded using the

   following ASN.1 structure:

 

           Dss-Sig-Value  ::=  SEQUENCE  {

                   r       INTEGER,

                   s       INTEGER  }

 

7.3  Subject Public Key Algorithms

 

   Certificates described by this profile may convey a public key for

   any public key algorithm. The certificate indicates the algorithm

   through an algorithm identifier.  This algorithm identifier is an OID

   and optionally associated parameters.

 

   This section identifies preferred OIDs and parameters for the RSA,

   DSA, and Diffie-Hellman algorithms.  Conforming CAs shall use the

   identified OIDs when issuing certificates containing public keys for

   these algorithms. Conforming applications supporting any of these

   algorithms shall, at a minimum, recognize the OID identified in this

   section.

 

 

 

 

 

Housley, et. al.            Standards Track                    [Page 60]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

7.3.1  RSA Keys

 

   The OID rsaEncryption identifies RSA public keys.

 

        pkcs-1 OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)

                       rsadsi(113549) pkcs(1) 1 }

 

        rsaEncryption OBJECT IDENTIFIER ::=  { pkcs-1 1}

 

   The rsaEncryption OID is intended to be used in the algorithm field

   of a value of type AlgorithmIdentifier. The parameters field shall

   have ASN.1 type NULL for this algorithm identifier.

 

   The RSA public key shall be encoded using the ASN.1 type

   RSAPublicKey:

 

      RSAPublicKey ::= SEQUENCE {

         modulus            INTEGER, -- n

         publicExponent     INTEGER  -- e -- }

 

   where modulus is the modulus n, and publicExponent is the public

   exponent e.  The DER encoded RSAPublicKey is the value of the BIT

   STRING subjectPublicKey.

 

   This OID is used in public key certificates for both RSA signature

   keys and RSA encryption keys. The intended application for the key

   may be indicated in the key usage field (see sec. 4.2.1.3).  The use

   of a single key for both signature and encryption purposes is not

   recommended, but is not forbidden.

 

   If the keyUsage extension is present in an end entity certificate

   which conveys an RSA public key, any combination of the following

   values may be present:  digitalSignature; nonRepudiation;

   keyEncipherment; and dataEncipherment.  If the keyUsage extension is

   present in a CA certificate which conveys an RSA public key, any

   combination of the following values may be present:

   digitalSignature; nonRepudiation; keyEncipherment; dataEncipherment;

   keyCertSign; and cRLSign.  However, this specification RECOMMENDS

   that if keyCertSign or cRLSign is present, both keyEncipherment and

   dataEncipherment should not be present.

 

7.3.2  Diffie-Hellman Key Exchange Key

 

   The Diffie-Hellman OID supported by this profile is defined by ANSI

   X9.42 [X9.42].

 

        dhpublicnumber OBJECT IDENTIFIER ::= { iso(1) member-body(2)

                  us(840) ansi-x942(10046) number-type(2) 1 }

 

 

 

Housley, et. al.            Standards Track                    [Page 61]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   The dhpublicnumber OID is intended to be used in the algorithm field

   of a value of type AlgorithmIdentifier. The parameters field of that

   type, which has the algorithm-specific syntax ANY DEFINED BY

   algorithm, have the ASN.1 type DomainParameters for this algorithm.

 

        DomainParameters ::= SEQUENCE {

              p       INTEGER, -- odd prime, p=jq +1

              g       INTEGER, -- generator, g

              q       INTEGER, -- factor of p-1

              j       INTEGER OPTIONAL, -- subgroup factor

              validationParms  ValidationParms OPTIONAL }

 

        ValidationParms ::= SEQUENCE {

              seed             BIT STRING,

              pgenCounter      INTEGER }

 

   The fields of type DomainParameters have the following meanings:

 

      p identifies the prime p defining the Galois field;

 

      g specifies the generator of the multiplicative subgroup of order

      g;

 

      q specifies the prime factor of p-1;

 

      j optionally specifies the value that satisfies the equation

      p=jq+1 to support the optional verification of group parameters;

 

      seed optionally specifies the bit string parameter used as the

      seed for the system parameter generation process; and

 

      pgenCounter optionally specifies the integer value output as part

      of the of the system parameter prime generation process.

 

   If either of the parameter generation components (pgencounter or

   seed) is provided, the other shall be present as well.

 

   The Diffie-Hellman public key shall be ASN.1 encoded as an INTEGER;

   this encoding shall be used as the contents (i.e., the value) of the

   subjectPublicKey component (a BIT STRING) of the subjectPublicKeyInfo

   data element.

 

      DHPublicKey ::= INTEGER -- public key, y = g^x mod p

 

 

 

 

 

 

 

 

Housley, et. al.            Standards Track                    [Page 62]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   If the keyUsage extension is present in a certificate which conveys a

   DH public key, the following values may be present:  keyAgreement;

   encipherOnly; and decipherOnly.  At most one of encipherOnly and

   decipherOnly shall be asserted in keyUsage extension.

 

7.3.3  DSA Signature Keys

 

   The Digital Signature Algorithm (DSA) is also known as the Digital

   Signature Standard (DSS). The DSA OID supported by this profile is

 

        id-dsa ID ::= { iso(1) member-body(2) us(840) x9-57(10040)

                  x9cm(4) 1 }

 

   The id-dsa algorithm syntax includes optional parameters.  These

   parameters are commonly referred to as p, q, and g.  When omitted,

   the parameters component shall be omitted entirely. That is, the

   AlgorithmIdentifier shall be a SEQUENCE of one component - the OBJECT

   IDENTIFIER id-dsa.

 

   If the DSA algorithm parameters are present in the

   subjectPublicKeyInfo AlgorithmIdentifier, the parameters are included

   using the following ASN.1 structure:

 

        Dss-Parms  ::=  SEQUENCE  {

            p             INTEGER,

            q             INTEGER,

            g             INTEGER  }

 

 

   If the DSA algorithm parameters are absent from the

   subjectPublicKeyInfo AlgorithmIdentifier and the CA signed the

   subject certificate using DSA, then the certificate issuer's DSA

   parameters apply to the subject's DSA key.  If the DSA algorithm

   parameters are absent from the subjectPublicKeyInfo

   AlgorithmIdentifier and the CA signed the subject certificate using a

   signature algorithm other than DSA, then the subject's DSA parameters

   are distributed by other means.  If the subjectPublicKeyInfo

   AlgorithmIdentifier field omits the parameters component and the CA

   signed the subject with a signature algorithm other than DSA, then

   clients shall reject the certificate.

 

   When signing, DSA algorithm generates two values.  These values are

   commonly referred to as r and s.  To easily transfer these two values

   as one signature, they are ASN.1 encoded using the following ASN.1

   structure:

 

 

 

 

 

 

Housley, et. al.            Standards Track                    [Page 63]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

        Dss-Sig-Value  ::=  SEQUENCE  {

            r             INTEGER,

            s             INTEGER  }

 

   The encoded signature is conveyed as the value of the BIT STRING

   signature in a Certificate or CertificateList.

 

   The DSA public key shall be ASN.1 DER encoded as an INTEGER; this

   encoding shall be used as the contents (i.e., the value) of the

   subjectPublicKey component (a BIT STRING) of the SubjectPublicKeyInfo

   data element.

 

        DSAPublicKey ::= INTEGER -- public key, Y

 

   If the keyUsage extension is present in an end entity certificate

   which conveys a DSA public key, any combination of the following

   values may be present:  digitalSignature; and nonRepudiation.

 

   If the keyUsage extension is present in an CA certificate which

   conveys a DSA public key, any combination of the following values may

   be present:  digitalSignature; nonRepudiation; keyCertSign; and

   cRLSign.

 

8 References

 

   [FIPS 180-1]  Federal Information Processing Standards Publication

                 (FIPS PUB) 180-1, Secure Hash Standard, 17 April 1995.

                 [Supersedes FIPS PUB 180 dated 11 May 1993.]

 

   [FIPS 186]    Federal Information Processing Standards Publication

                 (FIPS PUB) 186, Digital Signature Standard, 18 May

                 1994.

 

   [RC95]        Rogier, N. and Chauvaud, P., "The compression function

                 of MD2 is not collision free," Presented at Selected

                 Areas in Cryptography '95, May 1995.

 

   [RFC 791]     Postel, J., "Internet Protocol", STD 5, RFC 791,

                 September 1981.

 

   [RFC 822]     Crocker, D., "Standard for the format of ARPA Internet

                 text messages", STD 11, RFC 822, August 1982.

 

   [RFC 1034]    Mockapetris, P., "Domain names - concepts and

                 facilities", STD 13, RFC 1034, November 1987.

 

   [RFC 1319]    Kaliski, B., "The MD2 Message-Digest Algorithm," RFC

                 1319, April 1992.

 

 

 

Housley, et. al.            Standards Track                    [Page 64]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   [RFC 1321]    Rivest, R., "The MD5 Message-Digest Algorithm," RFC

                 1321, April 1992.

 

   [RFC 1422]    Kent, S.,  "Privacy Enhancement for Internet Electronic

                 Mail: Part II: Certificate-Based Key Management," RFC

                 1422, February 1993.

 

   [RFC 1423]    Balenson, D., "Privacy Enhancement for Internet

                 Electronic Mail: Part III: Algorithms, Modes, and

                 Identifiers," RFC 1423, February 1993.

 

   [RFC 1519]    Fuller, V., Li, T., Yu, J. and K. Varadhan. "Classless

                 Inter-Domain Routing (CIDR): an Address Assignment and

                 Aggregation Strategy", RFC 1519, September 1993.

 

   [RFC 1738]    Berners-Lee, T., Masinter L., and M. McCahill.

                 "Uniform Resource Locators (URL)", RFC 1738, December

                 1994.

 

   [RFC 1778]    Howes, T., Kille S., Yeong, W. and C. Robbins. "The

                 String Representation of Standard Attribute Syntaxes,"

                 RFC 1778, March 1995.

 

   [RFC 1883]    Deering, S. and R. Hinden. "Internet Protocol, Version

                 6 (IPv6) Specification", RFC 1883, December 1995.

 

   [RFC 2119]    Bradner, S., "Key words for use in RFCs to Indicate

                 Requirement Levels", BCP 14, RFC 2119, March 1997.

 

   [RFC 2247]    Kille, S., Wahl, M., Grimstad, A., Huber, R. and S.

                 Sataluri. "Using Domains in LDAP/X.500 Distinguished

                 Names", RFC 2247, January 1998.

 

   [RFC 2277]    Alvestrand, H., "IETF Policy on Character Sets and

                 Languages", RFC 2277, January 1998.

 

   [RFC 2279]    Yergeau, F., "UTF-8, a transformation format of ISO

                 10646", RFC 2279, January 1998.

 

   [RFC 2313]    Kaliski, B., "PKCS #1: RSA Encryption Version 1.5", RFC

                 2313, March 1998.

 

   [SDN.701]     SDN.701, "Message Security Protocol 4.0", Revision A

                 1997-02-06.

 

   [X.208]       CCITT Recommendation X.208: Specification of Abstract

                 Syntax Notation One (ASN.1), 1988.

 

 

 

 

Housley, et. al.            Standards Track                    [Page 65]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   [X.501]       ITU-T Recommendation X.501: Information Technology -

                 Open Systems Interconnection - The Directory: Models,

                 1993.

 

   [X.509]       ITU-T Recommendation X.509 (1997 E): Information

                 Technology - Open Systems Interconnection - The

                 Directory: Authentication Framework, June 1997.

 

   [X.520]       ITU-T Recommendation X.520: Information Technology -

                 Open Systems Interconnection - The Directory: Selected

                 Attribute Types, 1993.

 

   [X9.42]       ANSI X9.42-199x, Public Key Cryptography for The

                 Financial Services Industry: Agreement of Symmetric

                 Algorithm Keys Using Diffie-Hellman (Working Draft),

                 December 1997.

 

   [X9.55]       ANSI X9.55-1995, Public Key Cryptography For The

                 Financial Services Industry: Extensions To Public Key

                 Certificates And Certificate Revocation Lists, 8

                 December, 1995.

 

   [X9.57]        ANSI X9.57-199x, Public Key Cryptography For The

                 Financial Services Industry: Certificate Management

                 (Working Draft), 21 June, 1996.

 

9  Intellectual Property Rights

 

   The IETF has been notified of intellectual property rights claimed in

   regard to some or all of the specification contained in this

   document.  For more information consult the online list of claimed

   rights.

 

   The IETF takes no position regarding the validity or scope of any

   intellectual property or other rights that might be claimed to

   pertain to the implementation or use of the technology described in

   this document or the extent to which any license under such rights

   might or might not be available; neither does it represent that it

   has made any effort to identify any such rights. Information on the

   IETF's procedures with respect to rights in standards-track and

   standards-related documentation can be found in BCP-11. Copies of

   claims of rights made available for publication and any assurances of

   licenses to be made available, or the result of an attempt made to

 

 

 

 

 

 

 

 

Housley, et. al.            Standards Track                    [Page 66]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   obtain a general license or permission for the use of such

   proprietary rights by implementors or users of this specification can

   be obtained from the IETF Secretariat.

 

10  Security Considerations

 

   The majority of this specification is devoted to the format and

   content of certificates and CRLs.  Since certificates and CRLs are

   digitally signed, no additional integrity service is necessary.

   Neither certificates nor CRLs need be kept secret, and unrestricted

   and anonymous access to certificates and CRLs has no security

   implications.

 

   However, security factors outside the scope of this specification

   will affect the assurance provided to certificate users.  This

   section highlights critical issues that should be considered by

   implementors, administrators, and users.

 

   The procedures performed by CAs and RAs to validate the binding of

   the subject's identity of their public key greatly affect the

   assurance that should be placed in the certificate.  Relying parties

   may wish to review the CA's certificate practice statement.  This may

   be particularly important when issuing certificates to other CAs.

 

   The use of a single key pair for both signature and other purposes is

   strongly discouraged. Use of separate key pairs for signature and key

   management provides several benefits to the users. The ramifications

   associated with loss or disclosure of a signature key are different

   from loss or disclosure of a key management key. Using separate key

   pairs permits a balanced and flexible response.  Similarly, different

   validity periods or key lengths for each key pair may be appropriate

   in some application environments. Unfortunately, some legacy

   applications (e.g., SSL) use a single key pair for signature and key

   management.

 

   The protection afforded private keys is a critical factor in

   maintaining security.  On a small scale, failure of users to protect

   their private keys will permit an attacker to masquerade as them, or

   decrypt their personal information. On a larger scale, compromise of

   a CA's private signing key may have a catastrophic effect.  If an

   attacker obtains the private key unnoticed, the attacker may issue

   bogus certificates and CRLs.  Existence of bogus certificates and

   CRLs will undermine confidence in the system. If the compromise is

   detected, all certificates issued to the CA shall be revoked,

   preventing services between its users and users of other CAs.

   Rebuilding after such a compromise will be problematic, so CAs are

   advised to implement a combination of strong technical measures

   (e.g., tamper-resistant cryptographic modules) and appropriate

 

 

 

Housley, et. al.            Standards Track                    [Page 67]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   management procedures (e.g., separation of duties) to avoid such an

   incident.

 

   Loss of a CA's private signing key may also be problematic.  The CA

   would not be able to produce CRLs or perform normal key rollover.

   CAs are advised to maintain secure backup for signing keys.  The

   security of the key backup procedures is a critical factor in

   avoiding key compromise.

 

   The availability and freshness of revocation information will affect

   the degree of assurance that should be placed in a certificate.

   While certificates expire naturally, events may occur during its

   natural lifetime which negate the binding between the subject and

   public key.  If revocation information is untimely or unavailable,

   the assurance associated with the binding is clearly reduced.

   Similarly, implementations of the Path Validation mechanism described

   in section 6 that omit revocation checking provide less assurance

   than those that support it.

 

   The path validation algorithm depends on the certain knowledge of the

   public keys (and other information) about one or more trusted CAs.

   The decision to trust a CA is an important decision as it ultimately

   determines the trust afforded a certificate. The authenticated

   distribution of trusted CA public keys (usually in the form of a

   "self-signed" certificate) is a security critical out of band process

   that is beyond the scope of this specification.

 

   In addition, where a key compromise or CA failure occurs for a

   trusted CA, the user will need to modify the information provided to

   the path validation routine.  Selection of too many trusted CAs will

   make the trusted CA information difficult to maintain.  On the other

   hand, selection of only one trusted CA may limit users to a closed

   community of users until a global PKI emerges.

 

   The quality of implementations that process certificates may also

   affect the degree of assurance provided.  The path validation

   algorithm described in section 6 relies upon the integrity of the

   trusted CA information, and especially the integrity of the public

   keys associated with the trusted CAs.  By substituting public keys

   for which an attacker has the private key, an attacker could trick

   the user into accepting false certificates.

 

   The binding between a key and certificate subject cannot be stronger

   than the cryptographic module implementation and algorithms used to

   generate the signature.  Short key lengths or weak hash algorithms

   will limit the utility of a certificate.  CAs are encouraged to note

   advances in cryptology so they can employ strong cryptographic

   techniques.  In addition, CAs should decline to issue certificates to

 

 

 

Housley, et. al.            Standards Track                    [Page 68]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   CAs or end entities that generate weak signatures.

 

   Inconsistent application of name comparison rules may result in

   acceptance of invalid X.509 certification paths, or rejection of

   valid ones.  The X.500 series of specifications defines rules for

   comparing distinguished names require comparison of strings without

   regard to case, character set, multi-character white space substring,

   or leading and trailing white space.  This specification relaxes

   these requirements, requiring support for binary comparison at a

   minimum.

 

   CAs shall encode the distinguished name in the subject field of a CA

   certificate identically to the distinguished name in the issuer field

   in certificates issued by the latter CA.  If CAs use different

   encodings, implementations of this specification may fail to

   recognize name chains for paths that include this certificate.  As a

   consequence, valid paths could be rejected.

 

   In addition, name constraints for distinguished names shall be stated

   identically to the encoding used in the subject field or

   subjectAltName extension.  If not, (1) name constraints stated as

   excludedSubTrees will not match and invalid paths will be accepted

   and (2) name constraints expressed as permittedSubtrees will not

   match and valid paths will be rejected.  To avoid acceptance of

   invalid paths, CAs should state name constraints for distinguished

   names as permittedSubtrees where ever possible.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Housley, et. al.            Standards Track                    [Page 69]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

Appendix A. Psuedo-ASN.1 Structures and OIDs

 

   This section describes data objects used by conforming PKI components

   in an "ASN.1-like" syntax.  This syntax is a hybrid of the 1988 and

   1993 ASN.1 syntaxes.  The 1988 ASN.1 syntax is augmented with 1993

   UNIVERSAL Types UniversalString, BMPString and UTF8String.

 

   The ASN.1 syntax does not permit the inclusion of type statements in

   the ASN.1 module, and the 1993 ASN.1 standard does not permit use of

   the new UNIVERSAL types in modules using the 1988 syntax.  As a

   result, this module does not conform to either version of the ASN.1

   standard.

 

   This appendix may be converted into 1988 ASN.1 by replacing the

   defintions for the UNIVERSAL Types with the 1988 catch-all "ANY".

 

A.1 Explicitly Tagged Module, 1988 Syntax

 

PKIX1Explicit88 {iso(1) identified-organization(3) dod(6) internet(1)

  security(5) mechanisms(5) pkix(7) id-mod(0) id-pkix1-explicit-88(1)}

 

 

DEFINITIONS EXPLICIT TAGS ::=

 

BEGIN

 

-- EXPORTS ALL --

 

-- IMPORTS NONE --

 

-- UNIVERSAL Types defined in '93 and '98 ASN.1

-- but required by this specification

 

UniversalString ::= [UNIVERSAL 28] IMPLICIT OCTET STRING

        -- UniversalString is defined in ASN.1:1993

 

BMPString ::= [UNIVERSAL 30] IMPLICIT OCTET STRING

      -- BMPString is the subtype of UniversalString and models

       -- the Basic Multilingual Plane of ISO/IEC/ITU 10646-1

 

UTF8String ::= [UNIVERSAL 12] IMPLICIT OCTET STRING

        -- The content of this type conforms to RFC 2279.

 

--

-- PKIX specific OIDs

 

id-pkix  OBJECT IDENTIFIER  ::=

         { iso(1) identified-organization(3) dod(6) internet(1)

 

 

 

Housley, et. al.            Standards Track                    [Page 70]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

                    security(5) mechanisms(5) pkix(7) }

-- PKIX arcs

 

id-pe OBJECT IDENTIFIER  ::=  { id-pkix 1 }

        -- arc for private certificate extensions

id-qt OBJECT IDENTIFIER ::= { id-pkix 2 }

        -- arc for policy qualifier types

id-kp OBJECT IDENTIFIER ::= { id-pkix 3 }

        -- arc for extended key purpose OIDS

id-ad OBJECT IDENTIFIER ::= { id-pkix 48 }

        -- arc for access descriptors

 

-- policyQualifierIds for Internet policy qualifiers

 

id-qt-cps      OBJECT IDENTIFIER ::=  { id-qt 1 }

        -- OID for CPS qualifier

id-qt-unotice  OBJECT IDENTIFIER ::=  { id-qt 2 }

        -- OID for user notice qualifier

 

-- access descriptor definitions

 

id-ad-ocsp      OBJECT IDENTIFIER ::= { id-ad 1 }

id-ad-caIssuers OBJECT IDENTIFIER ::= { id-ad 2 }

 

-- attribute data types --

 

Attribute       ::=     SEQUENCE {

        type            AttributeType,

        values  SET OF AttributeValue

                -- at least one value is required -- }

 

AttributeType           ::=   OBJECT IDENTIFIER

 

AttributeValue          ::=   ANY

 

AttributeTypeAndValue           ::=     SEQUENCE {

        type    AttributeType,

        value   AttributeValue }

 

-- suggested naming attributes: Definition of the following

--  information object set may be augmented to meet local

--  requirements.  Note that deleting members of the set may

--  prevent interoperability with conforming implementations.

--  presented in pairs: the AttributeType followed by the

--  type definition for the corresponding AttributeValue

 

--Arc for standard naming attributes

id-at           OBJECT IDENTIFIER ::= {joint-iso-ccitt(2) ds(5) 4}

 

 

 

Housley, et. al.            Standards Track                    [Page 71]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

-- Attributes of type NameDirectoryString

id-at-name              AttributeType   ::=     {id-at 41}

id-at-surname           AttributeType   ::=     {id-at 4}

id-at-givenName         AttributeType   ::=     {id-at 42}

id-at-initials          AttributeType   ::=     {id-at 43}

id-at-generationQualifier       AttributeType   ::=     {id-at 44}

 

X520name        ::= CHOICE {

      teletexString         TeletexString (SIZE (1..ub-name)),

      printableString       PrintableString (SIZE (1..ub-name)),

      universalString       UniversalString (SIZE (1..ub-name)),

      utf8String            UTF8String (SIZE (1..ub-name)),

      bmpString             BMPString (SIZE(1..ub-name))   }

 

--

 

id-at-commonName        AttributeType   ::=     {id-at 3}

 

X520CommonName  ::=      CHOICE {

      teletexString         TeletexString (SIZE (1..ub-common-name)),

      printableString       PrintableString (SIZE (1..ub-common-name)),

      universalString       UniversalString (SIZE (1..ub-common-name)),

      utf8String            UTF8String (SIZE (1..ub-common-name)),

      bmpString             BMPString (SIZE(1..ub-common-name))   }

 

--

 

id-at-localityName      AttributeType   ::=     {id-at 7}

 

X520LocalityName ::= CHOICE {

      teletexString       TeletexString (SIZE (1..ub-locality-name)),

      printableString     PrintableString (SIZE (1..ub-locality-name)),

      universalString     UniversalString (SIZE (1..ub-locality-name)),

      utf8String          UTF8String (SIZE (1..ub-locality-name)),

      bmpString           BMPString (SIZE(1..ub-locality-name))   }

 

--

 

id-at-stateOrProvinceName       AttributeType   ::=     {id-at 8}

 

X520StateOrProvinceName         ::= CHOICE {

      teletexString       TeletexString (SIZE (1..ub-state-name)),

      printableString     PrintableString (SIZE (1..ub-state-name)),

      universalString     UniversalString (SIZE (1..ub-state-name)),

      utf8String          UTF8String (SIZE (1..ub-state-name)),

      bmpString           BMPString (SIZE(1..ub-state-name))   }

 

--

 

 

 

Housley, et. al.            Standards Track                    [Page 72]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

id-at-organizationName          AttributeType   ::=     {id-at 10}

 

X520OrganizationName ::= CHOICE {

  teletexString     TeletexString (SIZE (1..ub-organization-name)),

  printableString   PrintableString (SIZE (1..ub-organization-name)),

  universalString   UniversalString (SIZE (1..ub-organization-name)),

  utf8String        UTF8String (SIZE (1..ub-organization-name)),

  bmpString         BMPString (SIZE(1..ub-organization-name))   }

 

--

 

id-at-organizationalUnitName    AttributeType   ::=     {id-at 11}

 

X520OrganizationalUnitName ::= CHOICE {

 teletexString    TeletexString (SIZE (1..ub-organizational-unit-name)),

 printableString        PrintableString

                      (SIZE (1..ub-organizational-unit-name)),

 universalString        UniversalString

                      (SIZE (1..ub-organizational-unit-name)),

 utf8String       UTF8String (SIZE (1..ub-organizational-unit-name)),

 bmpString        BMPString (SIZE(1..ub-organizational-unit-name))   }

 

--

 

id-at-title     AttributeType   ::=     {id-at 12}

 

X520Title ::=   CHOICE {

      teletexString         TeletexString (SIZE (1..ub-title)),

      printableString       PrintableString (SIZE (1..ub-title)),

      universalString       UniversalString (SIZE (1..ub-title)),

      utf8String            UTF8String (SIZE (1..ub-title)),

      bmpString             BMPString (SIZE(1..ub-title))   }

 

--

 

id-at-dnQualifier       AttributeType   ::=     {id-at 46}

X520dnQualifier ::=     PrintableString

 

id-at-countryName       AttributeType   ::=     {id-at 6}

X520countryName ::=     PrintableString (SIZE (2)) -- IS 3166 codes

 

 

 -- Legacy attributes

 

pkcs-9 OBJECT IDENTIFIER ::=

       { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) 9 }

 

emailAddress AttributeType      ::= { pkcs-9 1 }

 

 

 

Housley, et. al.            Standards Track                    [Page 73]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

Pkcs9email ::= IA5String (SIZE (1..ub-emailaddress-length))

 

-- naming data types --

 

Name            ::=   CHOICE { -- only one possibility for now --

                                 rdnSequence  RDNSequence }

 

RDNSequence     ::=   SEQUENCE OF RelativeDistinguishedName

 

DistinguishedName       ::=   RDNSequence

 

RelativeDistinguishedName  ::=

                    SET SIZE (1 .. MAX) OF AttributeTypeAndValue

 

-- Directory string type --

 

DirectoryString ::= CHOICE {

      teletexString             TeletexString (SIZE (1..MAX)),

      printableString           PrintableString (SIZE (1..MAX)),

      universalString           UniversalString (SIZE (1..MAX)),

      utf8String              UTF8String (SIZE (1..MAX)),

      bmpString               BMPString (SIZE(1..MAX))   }

 

-- certificate and CRL specific structures begin here

 

Certificate  ::=  SEQUENCE  {

     tbsCertificate       TBSCertificate,

     signatureAlgorithm   AlgorithmIdentifier,

     signature            BIT STRING  }

 

TBSCertificate  ::=  SEQUENCE  {

     version         [0]  Version DEFAULT v1,

     serialNumber         CertificateSerialNumber,

     signature            AlgorithmIdentifier,

     issuer               Name,

     validity             Validity,

     subject              Name,

     subjectPublicKeyInfo SubjectPublicKeyInfo,

     issuerUniqueID  [1]  IMPLICIT UniqueIdentifier OPTIONAL,

                          -- If present, version shall be v2 or v3

     subjectUniqueID [2]  IMPLICIT UniqueIdentifier OPTIONAL,

                          -- If present, version shall be v2 or v3

     extensions      [3]  Extensions OPTIONAL

                          -- If present, version shall be v3 --  }

 

Version  ::=  INTEGER  {  v1(0), v2(1), v3(2)  }

 

CertificateSerialNumber  ::=  INTEGER

 

 

 

Housley, et. al.            Standards Track                    [Page 74]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

Validity ::= SEQUENCE {

     notBefore      Time,

     notAfter       Time }

 

Time ::= CHOICE {

     utcTime        UTCTime,

     generalTime    GeneralizedTime }

 

UniqueIdentifier  ::=  BIT STRING

 

SubjectPublicKeyInfo  ::=  SEQUENCE  {

     algorithm            AlgorithmIdentifier,

     subjectPublicKey     BIT STRING  }

 

Extensions  ::=  SEQUENCE SIZE (1..MAX) OF Extension

 

Extension  ::=  SEQUENCE  {

     extnID      OBJECT IDENTIFIER,

     critical    BOOLEAN DEFAULT FALSE,

     extnValue   OCTET STRING  }

 

-- CRL structures

 

CertificateList  ::=  SEQUENCE  {

     tbsCertList          TBSCertList,

     signatureAlgorithm   AlgorithmIdentifier,

     signature            BIT STRING  }

 

TBSCertList  ::=  SEQUENCE  {

     version                 Version OPTIONAL,

                                  -- if present, shall be v2

     signature               AlgorithmIdentifier,

     issuer                  Name,

     thisUpdate              Time,

     nextUpdate              Time OPTIONAL,

     revokedCertificates     SEQUENCE OF SEQUENCE  {

          userCertificate         CertificateSerialNumber,

          revocationDate          Time,

          crlEntryExtensions      Extensions OPTIONAL

                                         -- if present, shall be v2

                               }  OPTIONAL,

     crlExtensions           [0] Extensions OPTIONAL

                                         -- if present, shall be v2 -- }

 

-- Version, Time, CertificateSerialNumber, and Extensions were

-- defined earlier for use in the certificate structure

 

AlgorithmIdentifier  ::=  SEQUENCE  {

 

 

 

Housley, et. al.            Standards Track                    [Page 75]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

     algorithm               OBJECT IDENTIFIER,

     parameters              ANY DEFINED BY algorithm OPTIONAL  }

                                -- contains a value of the type

                                -- registered for use with the

                                -- algorithm object identifier value

 

-- Algorithm OIDs and parameter structures

 

pkcs-1 OBJECT IDENTIFIER ::= {

     iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) 1 }

 

rsaEncryption OBJECT IDENTIFIER ::=  { pkcs-1 1 }

 

md2WithRSAEncryption OBJECT IDENTIFIER  ::=  { pkcs-1 2 }

 

md5WithRSAEncryption OBJECT IDENTIFIER  ::=  { pkcs-1 4 }

 

sha1WithRSAEncryption OBJECT IDENTIFIER  ::=  { pkcs-1 5 }

 

id-dsa-with-sha1 OBJECT IDENTIFIER ::=  {

     iso(1) member-body(2) us(840) x9-57 (10040) x9algorithm(4) 3 }

 

Dss-Sig-Value  ::=  SEQUENCE  {

     r       INTEGER,

     s       INTEGER  }

 

dhpublicnumber OBJECT IDENTIFIER ::= {

     iso(1) member-body(2) us(840) ansi-x942(10046) number-type(2) 1 }

 

DomainParameters ::= SEQUENCE {

     p       INTEGER, -- odd prime, p=jq +1

     g       INTEGER, -- generator, g

     q       INTEGER, -- factor of p-1

     j       INTEGER OPTIONAL, -- subgroup factor, j>= 2

     validationParms  ValidationParms OPTIONAL }

 

ValidationParms ::= SEQUENCE {

     seed             BIT STRING,

     pgenCounter      INTEGER }

 

id-dsa OBJECT IDENTIFIER ::= {

     iso(1) member-body(2) us(840) x9-57(10040) x9algorithm(4) 1 }

 

Dss-Parms  ::=  SEQUENCE  {

     p             INTEGER,

     q             INTEGER,

     g             INTEGER  }

 

 

 

 

Housley, et. al.            Standards Track                    [Page 76]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

-- x400 address syntax starts here

--      OR Names

 

ORAddress ::= SEQUENCE {

   built-in-standard-attributes BuiltInStandardAttributes,

   built-in-domain-defined-attributes

                        BuiltInDomainDefinedAttributes OPTIONAL,

   -- see also teletex-domain-defined-attributes

   extension-attributes ExtensionAttributes OPTIONAL }

--      The OR-address is semantically absent from the OR-name if the

--      built-in-standard-attribute sequence is empty and the

--      built-in-domain-defined-attributes and extension-attributes are

--      both omitted.

 

--      Built-in Standard Attributes

 

BuiltInStandardAttributes ::= SEQUENCE {

   country-name CountryName OPTIONAL,

   administration-domain-name AdministrationDomainName OPTIONAL,

   network-address      [0] NetworkAddress OPTIONAL,

   -- see also extended-network-address

   terminal-identifier  [1] TerminalIdentifier OPTIONAL,

   private-domain-name  [2] PrivateDomainName OPTIONAL,

   organization-name    [3] OrganizationName OPTIONAL,

   -- see also teletex-organization-name

   numeric-user-identifier      [4] NumericUserIdentifier OPTIONAL,

   personal-name        [5] PersonalName OPTIONAL,

   -- see also teletex-personal-name

   organizational-unit-names    [6] OrganizationalUnitNames OPTIONAL

   -- see also teletex-organizational-unit-names -- }

 

CountryName ::= [APPLICATION 1] CHOICE {

   x121-dcc-code NumericString

                (SIZE (ub-country-name-numeric-length)),

   iso-3166-alpha2-code PrintableString

                (SIZE (ub-country-name-alpha-length)) }

 

AdministrationDomainName ::= [APPLICATION 2] CHOICE {

   numeric NumericString (SIZE (0..ub-domain-name-length)),

   printable PrintableString (SIZE (0..ub-domain-name-length)) }

 

NetworkAddress ::= X121Address  -- see also extended-network-address

 

X121Address ::= NumericString (SIZE (1..ub-x121-address-length))

 

TerminalIdentifier ::= PrintableString (SIZE (1..ub-terminal-id-length))

 

PrivateDomainName ::= CHOICE {

 

 

 

Housley, et. al.            Standards Track                    [Page 77]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   numeric NumericString (SIZE (1..ub-domain-name-length)),

   printable PrintableString (SIZE (1..ub-domain-name-length)) }

 

OrganizationName ::= PrintableString

                            (SIZE (1..ub-organization-name-length))

-- see also teletex-organization-name

 

NumericUserIdentifier ::= NumericString

                            (SIZE (1..ub-numeric-user-id-length))

 

PersonalName ::= SET {

   surname [0] PrintableString (SIZE (1..ub-surname-length)),

   given-name [1] PrintableString

                        (SIZE (1..ub-given-name-length)) OPTIONAL,

   initials [2] PrintableString (SIZE (1..ub-initials-length)) OPTIONAL,

   generation-qualifier [3] PrintableString

                (SIZE (1..ub-generation-qualifier-length)) OPTIONAL }

-- see also teletex-personal-name

 

OrganizationalUnitNames ::= SEQUENCE SIZE (1..ub-organizational-units)

                                        OF OrganizationalUnitName

-- see also teletex-organizational-unit-names

 

OrganizationalUnitName ::= PrintableString (SIZE

                        (1..ub-organizational-unit-name-length))

 

--      Built-in Domain-defined Attributes

 

BuiltInDomainDefinedAttributes ::= SEQUENCE SIZE

                                (1..ub-domain-defined-attributes) OF

                                BuiltInDomainDefinedAttribute

 

BuiltInDomainDefinedAttribute ::= SEQUENCE {

   type PrintableString (SIZE

                        (1..ub-domain-defined-attribute-type-length)),

   value PrintableString (SIZE

                        (1..ub-domain-defined-attribute-value-length))}

 

--      Extension Attributes

 

ExtensionAttributes ::= SET SIZE (1..ub-extension-attributes) OF

                        ExtensionAttribute

 

ExtensionAttribute ::=  SEQUENCE {

   extension-attribute-type [0] INTEGER (0..ub-extension-attributes),

   extension-attribute-value [1]

                        ANY DEFINED BY extension-attribute-type }

 

 

 

 

Housley, et. al.            Standards Track                    [Page 78]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

-- Extension types and attribute values

--

 

common-name INTEGER ::= 1

 

CommonName ::= PrintableString (SIZE (1..ub-common-name-length))

 

teletex-common-name INTEGER ::= 2

 

TeletexCommonName ::= TeletexString (SIZE (1..ub-common-name-length))

 

teletex-organization-name INTEGER ::= 3

 

TeletexOrganizationName ::=

                TeletexString (SIZE (1..ub-organization-name-length))

 

teletex-personal-name INTEGER ::= 4

 

TeletexPersonalName ::= SET {

   surname [0] TeletexString (SIZE (1..ub-surname-length)),

   given-name [1] TeletexString

                (SIZE (1..ub-given-name-length)) OPTIONAL,

   initials [2] TeletexString (SIZE (1..ub-initials-length)) OPTIONAL,

   generation-qualifier [3] TeletexString (SIZE

                (1..ub-generation-qualifier-length)) OPTIONAL }

 

teletex-organizational-unit-names INTEGER ::= 5

 

TeletexOrganizationalUnitNames ::= SEQUENCE SIZE

        (1..ub-organizational-units) OF TeletexOrganizationalUnitName

 

TeletexOrganizationalUnitName ::= TeletexString

                        (SIZE (1..ub-organizational-unit-name-length))

 

pds-name INTEGER ::= 7

 

PDSName ::= PrintableString (SIZE (1..ub-pds-name-length))

 

physical-delivery-country-name INTEGER ::= 8

 

PhysicalDeliveryCountryName ::= CHOICE {

   x121-dcc-code NumericString (SIZE (ub-country-name-numeric-length)),

   iso-3166-alpha2-code PrintableString

                        (SIZE (ub-country-name-alpha-length)) }

 

postal-code INTEGER ::= 9

 

PostalCode ::= CHOICE {

 

 

 

Housley, et. al.            Standards Track                    [Page 79]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   numeric-code NumericString (SIZE (1..ub-postal-code-length)),

   printable-code PrintableString (SIZE (1..ub-postal-code-length)) }

 

physical-delivery-office-name INTEGER ::= 10

 

PhysicalDeliveryOfficeName ::= PDSParameter

 

physical-delivery-office-number INTEGER ::= 11

 

PhysicalDeliveryOfficeNumber ::= PDSParameter

 

extension-OR-address-components INTEGER ::= 12

 

ExtensionORAddressComponents ::= PDSParameter

 

physical-delivery-personal-name INTEGER ::= 13

 

PhysicalDeliveryPersonalName ::= PDSParameter

 

physical-delivery-organization-name INTEGER ::= 14

 

PhysicalDeliveryOrganizationName ::= PDSParameter

 

extension-physical-delivery-address-components INTEGER ::= 15

 

ExtensionPhysicalDeliveryAddressComponents ::= PDSParameter

 

unformatted-postal-address INTEGER ::= 16

 

UnformattedPostalAddress ::= SET {

   printable-address SEQUENCE SIZE (1..ub-pds-physical-address-lines) OF

           PrintableString (SIZE (1..ub-pds-parameter-length)) OPTIONAL,

   teletex-string TeletexString

         (SIZE (1..ub-unformatted-address-length)) OPTIONAL }

 

street-address INTEGER ::= 17

 

StreetAddress ::= PDSParameter

 

post-office-box-address INTEGER ::= 18

 

PostOfficeBoxAddress ::= PDSParameter

 

poste-restante-address INTEGER ::= 19

 

PosteRestanteAddress ::= PDSParameter

 

unique-postal-name INTEGER ::= 20

 

 

 

Housley, et. al.            Standards Track                    [Page 80]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

UniquePostalName ::= PDSParameter

 

local-postal-attributes INTEGER ::= 21

 

LocalPostalAttributes ::= PDSParameter

 

PDSParameter ::= SET {

   printable-string PrintableString

                (SIZE(1..ub-pds-parameter-length)) OPTIONAL,

   teletex-string TeletexString

                (SIZE(1..ub-pds-parameter-length)) OPTIONAL }

 

extended-network-address INTEGER ::= 22

 

ExtendedNetworkAddress ::= CHOICE {

   e163-4-address SEQUENCE {

        number [0] NumericString (SIZE (1..ub-e163-4-number-length)),

        sub-address [1] NumericString

                (SIZE (1..ub-e163-4-sub-address-length)) OPTIONAL },

   psap-address [0] PresentationAddress }

 

PresentationAddress ::= SEQUENCE {

        pSelector       [0] EXPLICIT OCTET STRING OPTIONAL,

        sSelector       [1] EXPLICIT OCTET STRING OPTIONAL,

        tSelector       [2] EXPLICIT OCTET STRING OPTIONAL,

        nAddresses      [3] EXPLICIT SET SIZE (1..MAX) OF OCTET STRING }

 

terminal-type  INTEGER ::= 23

 

TerminalType ::= INTEGER {

   telex (3),

   teletex (4),

   g3-facsimile (5),

   g4-facsimile (6),

   ia5-terminal (7),

   videotex (8) } (0..ub-integer-options)

 

--      Extension Domain-defined Attributes

 

teletex-domain-defined-attributes INTEGER ::= 6

 

TeletexDomainDefinedAttributes ::= SEQUENCE SIZE

   (1..ub-domain-defined-attributes) OF TeletexDomainDefinedAttribute

 

TeletexDomainDefinedAttribute ::= SEQUENCE {

        type TeletexString

               (SIZE (1..ub-domain-defined-attribute-type-length)),

        value TeletexString

 

 

 

Housley, et. al.            Standards Track                    [Page 81]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

               (SIZE (1..ub-domain-defined-attribute-value-length)) }

 

--  specifications of Upper Bounds shall be regarded as mandatory

--  from Annex B of ITU-T X.411 Reference Definition of MTS Parameter

--  Upper Bounds

 

--      Upper Bounds

ub-name INTEGER ::=     32768

ub-common-name  INTEGER ::=     64

ub-locality-name        INTEGER ::=     128

ub-state-name   INTEGER ::=     128

ub-organization-name    INTEGER ::=     64

ub-organizational-unit-name     INTEGER ::=     64

ub-title        INTEGER ::=     64

ub-match        INTEGER ::=     128

 

ub-emailaddress-length INTEGER ::= 128

 

ub-common-name-length INTEGER ::= 64

ub-country-name-alpha-length INTEGER ::= 2

ub-country-name-numeric-length INTEGER ::= 3

ub-domain-defined-attributes INTEGER ::= 4

ub-domain-defined-attribute-type-length INTEGER ::= 8

ub-domain-defined-attribute-value-length INTEGER ::= 128

ub-domain-name-length INTEGER ::= 16

ub-extension-attributes INTEGER ::= 256

ub-e163-4-number-length INTEGER ::= 15

ub-e163-4-sub-address-length INTEGER ::= 40

ub-generation-qualifier-length INTEGER ::= 3

ub-given-name-length INTEGER ::= 16

ub-initials-length INTEGER ::= 5

ub-integer-options INTEGER ::= 256

ub-numeric-user-id-length INTEGER ::= 32

ub-organization-name-length INTEGER ::= 64

ub-organizational-unit-name-length INTEGER ::= 32

ub-organizational-units INTEGER ::= 4

ub-pds-name-length INTEGER ::= 16

ub-pds-parameter-length INTEGER ::= 30

ub-pds-physical-address-lines INTEGER ::= 6

ub-postal-code-length INTEGER ::= 16

ub-surname-length INTEGER ::= 40

ub-terminal-id-length INTEGER ::= 24

ub-unformatted-address-length INTEGER ::= 180

ub-x121-address-length INTEGER ::= 16

 

-- Note - upper bounds on string types, such as TeletexString, are

-- measured in characters.  Excepting PrintableString or IA5String, a

-- significantly greater number of octets will be required to hold

 

 

 

Housley, et. al.            Standards Track                    [Page 82]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

-- such a value.  As a minimum, 16 octets, or twice the specified upper

-- bound, whichever is the larger, should be allowed for TeletexString.

-- For UTF8String or UniversalString at least four times the upper

-- bound should be allowed.

 

END

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Housley, et. al.            Standards Track                    [Page 83]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

A.2 Implicitly Tagged Module, 1988 Syntax

 

PKIX1Implicit88 {iso(1) identified-organization(3) dod(6) internet(1)

  security(5) mechanisms(5) pkix(7) id-mod(0) id-pkix1-implicit-88(2)}

 

DEFINITIONS IMPLICIT TAGS ::=

 

BEGIN

 

-- EXPORTS ALL --

 

IMPORTS

        id-pkix, id-pe, id-qt, id-kp, id-qt-unotice, id-qt-cps,

            id-ad, id-ad-ocsp, id-ad-caIssuers,

            -- delete following line if "new" types are supported --

            BMPString, UniversalString, UTF8String, -- end "new" types

                ORAddress, Name, RelativeDistinguishedName,

                CertificateSerialNumber,

                CertificateList, AlgorithmIdentifier, ub-name,

                Attribute, DirectoryString

                FROM PKIX1Explicit88 {iso(1) identified-organization(3)

                dod(6) internet(1) security(5) mechanisms(5) pkix(7)

                id-mod(0) id-pkix1-explicit(1)};

 

 

-- ISO arc for standard certificate and CRL extensions

 

id-ce OBJECT IDENTIFIER  ::=  {joint-iso-ccitt(2) ds(5) 29}

 

-- authority key identifier OID and syntax

 

id-ce-authorityKeyIdentifier OBJECT IDENTIFIER ::=  { id-ce 35 }

 

AuthorityKeyIdentifier ::= SEQUENCE {

      keyIdentifier             [0] KeyIdentifier            OPTIONAL,

      authorityCertIssuer       [1] GeneralNames             OPTIONAL,

      authorityCertSerialNumber [2] CertificateSerialNumber  OPTIONAL }

    -- authorityCertIssuer and authorityCertSerialNumber shall both

    -- be present or both be absent

 

KeyIdentifier ::= OCTET STRING

 

-- subject key identifier OID and syntax

 

id-ce-subjectKeyIdentifier OBJECT IDENTIFIER ::=  { id-ce 14 }

 

SubjectKeyIdentifier ::= KeyIdentifier

 

 

 

 

Housley, et. al.            Standards Track                    [Page 84]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

-- key usage extension OID and syntax

 

id-ce-keyUsage OBJECT IDENTIFIER ::=  { id-ce 15 }

 

KeyUsage ::= BIT STRING {

     digitalSignature        (0),

     nonRepudiation          (1),

     keyEncipherment         (2),

     dataEncipherment        (3),

     keyAgreement            (4),

     keyCertSign             (5),

     cRLSign                 (6),

     encipherOnly            (7),

     decipherOnly            (8) }

 

-- private key usage period extension OID and syntax

 

id-ce-privateKeyUsagePeriod OBJECT IDENTIFIER ::=  { id-ce 16 }

 

PrivateKeyUsagePeriod ::= SEQUENCE {

     notBefore       [0]     GeneralizedTime OPTIONAL,

     notAfter        [1]     GeneralizedTime OPTIONAL }

     -- either notBefore or notAfter shall be present

 

-- certificate policies extension OID and syntax

 

id-ce-certificatePolicies OBJECT IDENTIFIER ::=  { id-ce 32 }

 

CertificatePolicies ::= SEQUENCE SIZE (1..MAX) OF PolicyInformation

 

PolicyInformation ::= SEQUENCE {

     policyIdentifier   CertPolicyId,

     policyQualifiers   SEQUENCE SIZE (1..MAX) OF

             PolicyQualifierInfo OPTIONAL }

 

CertPolicyId ::= OBJECT IDENTIFIER

 

PolicyQualifierInfo ::= SEQUENCE {

       policyQualifierId  PolicyQualifierId,

       qualifier        ANY DEFINED BY policyQualifierId }

 

-- Implementations that recognize additional policy qualifiers shall

-- augment the following definition for PolicyQualifierId

 

PolicyQualifierId ::=

    OBJECT IDENTIFIER ( id-qt-cps | id-qt-unotice )

 

-- CPS pointer qualifier

 

 

 

Housley, et. al.            Standards Track                    [Page 85]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

CPSuri ::= IA5String

 

-- user notice qualifier

 

UserNotice ::= SEQUENCE {

     noticeRef        NoticeReference OPTIONAL,

     explicitText     DisplayText OPTIONAL}

 

NoticeReference ::= SEQUENCE {

     organization     DisplayText,

     noticeNumbers    SEQUENCE OF INTEGER }

 

DisplayText ::= CHOICE {

     visibleString    VisibleString  (SIZE (1..200)),

     bmpString        BMPString      (SIZE (1..200)),

     utf8String       UTF8String     (SIZE (1..200)) }

 

-- policy mapping extension OID and syntax

 

id-ce-policyMappings OBJECT IDENTIFIER ::=  { id-ce 33 }

 

PolicyMappings ::= SEQUENCE SIZE (1..MAX) OF SEQUENCE {

     issuerDomainPolicy      CertPolicyId,

     subjectDomainPolicy     CertPolicyId }

 

-- subject alternative name extension OID and syntax

 

id-ce-subjectAltName OBJECT IDENTIFIER ::=  { id-ce 17 }

 

SubjectAltName ::= GeneralNames

 

GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName

 

GeneralName ::= CHOICE {

     otherName                       [0]     AnotherName,

     rfc822Name                      [1]     IA5String,

     dNSName                         [2]     IA5String,

     x400Address                     [3]     ORAddress,

     directoryName                   [4]     Name,

     ediPartyName                    [5]     EDIPartyName,

     uniformResourceIdentifier       [6]     IA5String,

     iPAddress                       [7]     OCTET STRING,

     registeredID                    [8]     OBJECT IDENTIFIER }

 

-- AnotherName replaces OTHER-NAME ::= TYPE-IDENTIFIER, as

-- TYPE-IDENTIFIER is not supported in the '88 ASN.1 syntax

 

AnotherName ::= SEQUENCE {

 

 

 

Housley, et. al.            Standards Track                    [Page 86]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

     type-id    OBJECT IDENTIFIER,

     value      [0] EXPLICIT ANY DEFINED BY type-id }

 

EDIPartyName ::= SEQUENCE {

     nameAssigner            [0]     DirectoryString OPTIONAL,

     partyName               [1]     DirectoryString }

 

-- issuer alternative name extension OID and syntax

 

id-ce-issuerAltName OBJECT IDENTIFIER ::=  { id-ce 18 }

 

IssuerAltName ::= GeneralNames

 

id-ce-subjectDirectoryAttributes OBJECT IDENTIFIER ::=  { id-ce 9 }

 

SubjectDirectoryAttributes ::= SEQUENCE SIZE (1..MAX) OF Attribute

 

-- basic constraints extension OID and syntax

 

id-ce-basicConstraints OBJECT IDENTIFIER ::=  { id-ce 19 }

 

BasicConstraints ::= SEQUENCE {

     cA                      BOOLEAN DEFAULT FALSE,

     pathLenConstraint       INTEGER (0..MAX) OPTIONAL }

 

-- name constraints extension OID and syntax

 

id-ce-nameConstraints OBJECT IDENTIFIER ::=  { id-ce 30 }

 

NameConstraints ::= SEQUENCE {

     permittedSubtrees       [0]     GeneralSubtrees OPTIONAL,

     excludedSubtrees        [1]     GeneralSubtrees OPTIONAL }

 

GeneralSubtrees ::= SEQUENCE SIZE (1..MAX) OF GeneralSubtree

 

GeneralSubtree ::= SEQUENCE {

     base                    GeneralName,

     minimum         [0]     BaseDistance DEFAULT 0,

     maximum         [1]     BaseDistance OPTIONAL }

 

BaseDistance ::= INTEGER (0..MAX)

 

-- policy constraints extension OID and syntax

 

id-ce-policyConstraints OBJECT IDENTIFIER ::=  { id-ce 36 }

 

PolicyConstraints ::= SEQUENCE {

     requireExplicitPolicy           [0] SkipCerts OPTIONAL,

 

 

 

Housley, et. al.            Standards Track                    [Page 87]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

     inhibitPolicyMapping            [1] SkipCerts OPTIONAL }

 

SkipCerts ::= INTEGER (0..MAX)

 

-- CRL distribution points extension OID and syntax

 

id-ce-cRLDistributionPoints     OBJECT IDENTIFIER  ::=  {id-ce 31}

 

CRLDistPointsSyntax ::= SEQUENCE SIZE (1..MAX) OF DistributionPoint

 

DistributionPoint ::= SEQUENCE {

     distributionPoint       [0]     DistributionPointName OPTIONAL,

     reasons                 [1]     ReasonFlags OPTIONAL,

     cRLIssuer               [2]     GeneralNames OPTIONAL }

 

DistributionPointName ::= CHOICE {

     fullName                [0]     GeneralNames,

     nameRelativeToCRLIssuer [1]     RelativeDistinguishedName }

 

ReasonFlags ::= BIT STRING {

     unused                  (0),

     keyCompromise           (1),

     cACompromise            (2),

     affiliationChanged      (3),

     superseded              (4),

     cessationOfOperation    (5),

     certificateHold         (6) }

 

-- extended key usage extension OID and syntax

 

id-ce-extKeyUsage OBJECT IDENTIFIER ::= {id-ce 37}

 

ExtKeyUsageSyntax ::= SEQUENCE SIZE (1..MAX) OF KeyPurposeId

 

KeyPurposeId ::= OBJECT IDENTIFIER

 

-- extended key purpose OIDs

id-kp-serverAuth      OBJECT IDENTIFIER ::= { id-kp 1 }

id-kp-clientAuth      OBJECT IDENTIFIER ::= { id-kp 2 }

id-kp-codeSigning     OBJECT IDENTIFIER ::= { id-kp 3 }

id-kp-emailProtection OBJECT IDENTIFIER ::= { id-kp 4 }

id-kp-ipsecEndSystem  OBJECT IDENTIFIER ::= { id-kp 5 }

id-kp-ipsecTunnel     OBJECT IDENTIFIER ::= { id-kp 6 }

id-kp-ipsecUser       OBJECT IDENTIFIER ::= { id-kp 7 }

id-kp-timeStamping    OBJECT IDENTIFIER ::= { id-kp 8 }

 

-- authority info access

 

 

 

 

Housley, et. al.            Standards Track                    [Page 88]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

id-pe-authorityInfoAccess OBJECT IDENTIFIER ::= { id-pe 1 }

 

AuthorityInfoAccessSyntax  ::=

        SEQUENCE SIZE (1..MAX) OF AccessDescription

 

AccessDescription  ::=  SEQUENCE {

        accessMethod          OBJECT IDENTIFIER,

        accessLocation        GeneralName  }

 

-- CRL number extension OID and syntax

 

id-ce-cRLNumber OBJECT IDENTIFIER ::= { id-ce 20 }

 

CRLNumber ::= INTEGER (0..MAX)

 

-- issuing distribution point extension OID and syntax

 

id-ce-issuingDistributionPoint OBJECT IDENTIFIER ::= { id-ce 28 }

 

IssuingDistributionPoint ::= SEQUENCE {

     distributionPoint       [0] DistributionPointName OPTIONAL,

     onlyContainsUserCerts   [1] BOOLEAN DEFAULT FALSE,

     onlyContainsCACerts     [2] BOOLEAN DEFAULT FALSE,

     onlySomeReasons         [3] ReasonFlags OPTIONAL,

     indirectCRL             [4] BOOLEAN DEFAULT FALSE }

 

 

id-ce-deltaCRLIndicator OBJECT IDENTIFIER ::= { id-ce 27 }

 

-- deltaCRLIndicator ::= BaseCRLNumber

 

BaseCRLNumber ::= CRLNumber

 

-- CRL reasons extension OID and syntax

 

id-ce-cRLReasons OBJECT IDENTIFIER ::= { id-ce 21 }

 

CRLReason ::= ENUMERATED {

     unspecified             (0),

     keyCompromise           (1),

     cACompromise            (2),

     affiliationChanged      (3),

     superseded              (4),

     cessationOfOperation    (5),

     certificateHold         (6),

     removeFromCRL           (8) }

 

-- certificate issuer CRL entry extension OID and syntax

 

 

 

Housley, et. al.            Standards Track                    [Page 89]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

id-ce-certificateIssuer OBJECT IDENTIFIER ::= { id-ce 29 }

 

CertificateIssuer ::= GeneralNames

 

-- hold instruction extension OID and syntax

 

id-ce-holdInstructionCode OBJECT IDENTIFIER ::= { id-ce 23 }

 

HoldInstructionCode ::= OBJECT IDENTIFIER

 

-- ANSI x9 holdinstructions

 

-- ANSI x9 arc holdinstruction arc

holdInstruction OBJECT IDENTIFIER ::=

          {joint-iso-itu-t(2) member-body(2) us(840) x9cm(10040) 2}

 

-- ANSI X9 holdinstructions referenced by this standard

id-holdinstruction-none OBJECT IDENTIFIER  ::=

                {holdInstruction 1} -- deprecated

id-holdinstruction-callissuer OBJECT IDENTIFIER ::=

                {holdInstruction 2}

id-holdinstruction-reject OBJECT IDENTIFIER ::=

                {holdInstruction 3}

 

-- invalidity date CRL entry extension OID and syntax

 

id-ce-invalidityDate OBJECT IDENTIFIER ::= { id-ce 24 }

 

InvalidityDate ::=  GeneralizedTime

 

END

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Housley, et. al.            Standards Track                    [Page 90]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

Appendix B. 1993 ASN.1 Structures and OIDs

 

 

B.1 Explicitly Tagged Module, 1993 Syntax

 

PKIX1Explicit93 {iso(1) identified-organization(3) dod(6) internet(1)

   security(5) mechanisms(5) pkix(7) id-mod(0) id-pkix1-explicit-93(3)}

 

 

DEFINITIONS EXPLICIT TAGS ::=

 

BEGIN

 

-- EXPORTS ALL --

 

IMPORTS

        authorityKeyIdentifier, subjectKeyIdentifier, keyUsage,

           extendedKeyUsage, privateKeyUsagePeriod, certificatePolicies,

           policyMappings, subjectAltName, issuerAltName,

           basicConstraints, nameConstraints, policyConstraints,

           cRLDistributionPoints, subjectDirectoryAttributes,

           cRLNumber, reasonCode, instructionCode, invalidityDate,

           issuingDistributionPoint, certificateIssuer,

           deltaCRLIndicator, authorityInfoAccess, id-ce

           FROM PKIX1Implicit93 {iso(1) identified-organization(3)

           dod(6) internet(1) security(5) mechanisms(5) pkix(7)

           id-mod(0) id-pkix1-implicit-93(4)} ;

 

--

                   --  Locally defined OIDs  --

 

id-pkix  OBJECT IDENTIFIER  ::=

         { iso(1) identified-organization(3) dod(6) internet(1)

                    security(5) mechanisms(5) pkix(7) }

 

-- PKIX arcs

-- arc for private certificate extensions

id-pe OBJECT IDENTIFIER  ::=  { id-pkix 1 }

 -- arc for policy qualifier types

id-qt OBJECT IDENTIFIER ::= { id-pkix 2 }

-- arc for extended key purpose OIDS

id-kp OBJECT IDENTIFIER ::= { id-pkix 3 }

-- arc for access descriptors

id-ad OBJECT IDENTIFIER ::= { id-pkix 48 }

 

-- policyQualifierIds for Internet policy qualifiers

id-qt-cps      OBJECT IDENTIFIER ::=  { id-qt 1 }

        -- OID for CPS qualifier

 

 

 

Housley, et. al.            Standards Track                    [Page 91]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

id-qt-unotice  OBJECT IDENTIFIER ::=  { id-qt 2 }

        -- OID for user notice qualifier

 

-- based on excerpts from AuthenticationFramework

--    {joint-iso-ccitt ds(5) modules(1) authenticationFramework(7) 2}

 

               -- Public Key Certificate --

 

Certificate            ::=   SIGNED { SEQUENCE {

   version                 [0]   Version DEFAULT v1,

   serialNumber                  CertificateSerialNumber,

   signature                     AlgorithmIdentifier,

   issuer                        Name,

   validity                      Validity,

   subject                       Name,

   subjectPublicKeyInfo          SubjectPublicKeyInfo,

   issuerUniqueIdentifier  [1]   IMPLICIT UniqueIdentifier OPTIONAL,

                              ---if present, version shall be v2 or v3--

   subjectUniqueIdentifier [2]   IMPLICIT UniqueIdentifier OPTIONAL,

                              ---if present, version shall be v2 or v3--

   extensions              [3]   Extensions OPTIONAL

                              --if present, version shall be v3--}  }

 

UniqueIdentifier        ::=  BIT STRING

 

Version                 ::=  INTEGER { v1(0), v2(1), v3(2) }

 

CertificateSerialNumber ::=  INTEGER

 

Validity                        ::=     SEQUENCE {

   notBefore            Time,

   notAfter             Time }

 

Time ::= CHOICE {

        utcTime         UTCTime,

        generalTime             GeneralizedTime }

 

SubjectPublicKeyInfo    ::=     SEQUENCE{

   algorithm            AlgorithmIdentifier,

   subjectPublicKey     BIT STRING}

 

Extensions        ::=   SEQUENCE SIZE (1..MAX) OF Extension

 

Extension         ::=   SEQUENCE {

   extnId            EXTENSION.&id ({ExtensionSet}),

   critical          BOOLEAN DEFAULT FALSE,

   extnValue         OCTET STRING }

                -- contains a DER encoding of a value of type

 

 

 

Housley, et. al.            Standards Track                    [Page 92]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

                -- &ExtnType for the

                -- extension object identified by extnId --

 

-- The following information object set is defined to constrain the

-- set of legal certificate extensions.

 

ExtensionSet    EXTENSION       ::=     { authorityKeyIdentifier |

                                        subjectKeyIdentifier |

                                        keyUsage |

                                        extendedKeyUsage |

                                        privateKeyUsagePeriod |

                                        certificatePolicies |

                                        policyMappings |

                                        subjectAltName |

                                        issuerAltName |

                                        basicConstraints |

                                        nameConstraints |

                                        policyConstraints |

                                        cRLDistributionPoints |

                                        subjectDirectoryAttributes |

                                        authorityInfoAccess }

 

EXTENSION       ::=     CLASS {

   &id          OBJECT IDENTIFIER UNIQUE,

   &ExtnType }

WITH SYNTAX  {

   SYNTAX               &ExtnType

   IDENTIFIED BY        &id }

 

                  -- Certificate Revocation List --

 

CertificateList ::=    SIGNED { SEQUENCE {

   version                Version  OPTIONAL, -- if present, shall be v2

   signature              AlgorithmIdentifier,

   issuer                 Name,

   thisUpdate             Time,

   nextUpdate             Time OPTIONAL,

   revokedCertificates    SEQUENCE OF SEQUENCE {

   userCertificate        CertificateSerialNumber,

   revocationDate         Time,

   crlEntryExtensions     EntryExtensions OPTIONAL } OPTIONAL,

   crlExtensions          [0]   CRLExtensions OPTIONAL }}

 

CRLExtensions        ::=        SEQUENCE SIZE (1..MAX) OF CRLExtension

 

CRLExtension         ::=        SEQUENCE {

   extnId            EXTENSION.&id ({CRLExtensionSet}),

   critical          BOOLEAN DEFAULT FALSE,

 

 

 

Housley, et. al.            Standards Track                    [Page 93]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

   extnValue         OCTET STRING }

                -- contains a DER encoding of a value of type

                -- &ExtnType for the

                -- extension object identified by extnId --

 

-- The following information object set is defined to constrain the

-- set of legal CRL extensions.

 

CRLExtensionSet EXTENSION       ::=     { authorityKeyIdentifier |

                                        issuerAltName |

                                        cRLNumber |

                                        deltaCRLIndicator |

                                        issuingDistributionPoint }

 

-- EXTENSION defined above for certificates

 

EntryExtensions        ::=      SEQUENCE SIZE (1..MAX) OF EntryExtension

 

EntryExtension         ::=      SEQUENCE {

   extnId            EXTENSION.&id ({EntryExtensionSet}),

   critical          BOOLEAN DEFAULT FALSE,

   extnValue         OCTET STRING }

                -- contains a DER encoding of a value of type

                -- &ExtnType for the

                -- extension object identified by extnId --

 

-- The following information object set is defined to constrain the

-- set of legal CRL entry extensions.

 

EntryExtensionSet       EXTENSION       ::=     { reasonCode |

                                                instructionCode |

                                                invalidityDate |

                                                certificateIssuer }

 

         -- information object classes used in the defintion --

                    -- of certificates and CRLs --

 

-- Parameterized Type SIGNED --

 

  SIGNED { ToBeSigned } ::= SEQUENCE {

     toBeSigned  ToBeSigned,

     algorithm   AlgorithmIdentifier,

     signature   BIT STRING

  }

 

-- Definition of AlgorithmIdentifier

-- ISO definition was:

--

 

 

 

Housley, et. al.            Standards Track                    [Page 94]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

-- AlgorithmIdentifier     ::=  SEQUENCE {

--   algorithm          ALGORITHM.&id({SupportedAlgorithms}),

--   parameters         ALGORITHM.&Type({SupportedAlgorithms}

--                                         { @algorithm}) OPTIONAL }

-- Definition of ALGORITHM

-- ALGORITHM    ::=     TYPE-IDENTIFIER

 

-- The following PKIX definition replaces the X.509 definition

--

 

AlgorithmIdentifier     ::=  SEQUENCE {

   algorithm            ALGORITHM-ID.&id({SupportedAlgorithms}),

   parameters           ALGORITHM-ID.&Type({SupportedAlgorithms}

                                           { @algorithm}) OPTIONAL }

 

-- Definition of ALGORITHM-ID

 

 ALGORITHM-ID ::= CLASS {

     &id    OBJECT IDENTIFIER UNIQUE,

     &Type  OPTIONAL

  }

     WITH SYNTAX { OID &id [PARMS &Type] }

 

-- The definition of SupportedAlgorithms may be modified as this

-- document does not specify a mandatory algorithm set.  In addition,

-- the set is specified as extensible, since additional algorithms

-- may be supported

 

SupportedAlgorithms     ALGORITHM-ID  ::=       { ..., -- extensible

                                            rsaPublicKey |

                                            rsaSHA-1  |

                                            rsaMD5 |

                                            rsaMD2 |

                                            dssPublicKey |

                                            dsaSHA-1 |

                                            dhPublicKey }

 

-- OIDs and parameter structures for ALGORITHM-IDs used

-- in this specification

 

rsaPublicKey ALGORITHM-ID ::= { OID rsaEncryption PARMS NULL }

 

rsaSHA-1 ALGORITHM-ID ::= { OID sha1WithRSAEncryption PARMS NULL }

 

rsaMD5 ALGORITHM-ID ::= { OID md5WithRSAEncryption PARMS NULL  }

 

rsaMD2 ALGORITHM-ID ::= { OID md2WithRSAEncryption PARMS NULL  }

 

 

 

 

Housley, et. al.            Standards Track                    [Page 95]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

dssPublicKey ALGORITHM-ID ::= { OID id-dsa PARMS Dss-Parms }

 

dsaSHA-1 ALGORITHM-ID ::= { OID id-dsa-with-sha1 }

 

dhPublicKey ALGORITHM-ID ::= {OID dhpublicnumber PARMS DomainParameters}

 

-- algorithm identifiers and parameter structures

 

pkcs-1 OBJECT IDENTIFIER ::= {

     iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) 1 }

 

rsaEncryption OBJECT IDENTIFIER ::=  { pkcs-1 1 }

 

md2WithRSAEncryption OBJECT IDENTIFIER  ::=  { pkcs-1 2 }

 

md5WithRSAEncryption OBJECT IDENTIFIER  ::=  { pkcs-1 4 }

 

sha1WithRSAEncryption OBJECT IDENTIFIER  ::=  { pkcs-1 5 }

 

id-dsa-with-sha1 OBJECT IDENTIFIER ::=  {

     iso(1) member-body(2) us(840) x9-57 (10040) x9algorithm(4) 3 }

 

Dss-Sig-Value  ::=  SEQUENCE  {

     r       INTEGER,

     s       INTEGER  }

 

dhpublicnumber OBJECT IDENTIFIER ::= {

     iso(1) member-body(2) us(840) ansi-x942(10046) number-type(2) 1 }

 

DomainParameters ::= SEQUENCE {

     p       INTEGER, -- odd prime, p=jq +1

     g       INTEGER, -- generator, g

     q       INTEGER, -- factor of p-1

     j       INTEGER OPTIONAL, -- subgroup factor, j>= 2

     validationParms  ValidationParms OPTIONAL }

 

ValidationParms ::= SEQUENCE {

     seed             BIT STRING,

     pgenCounter      INTEGER }

 

id-dsa OBJECT IDENTIFIER ::= {

     iso(1) member-body(2) us(840) x9-57(10040) x9algorithm(4) 1 }

 

Dss-Parms  ::=  SEQUENCE  {

     p             INTEGER,

     q             INTEGER,

     g             INTEGER  }

 

 

 

 

Housley, et. al.            Standards Track                    [Page 96]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

     -- The ASN.1 in this section supports the Name type

     -- and the directoryAttribute extension

 

-- attribute data types --

 

Attribute       ::=     SEQUENCE {

        type            ATTRIBUTE.&id ({SupportedAttributes}),

        values  SET SIZE (1 .. MAX) OF ATTRIBUTE.&Type

                        ({SupportedAttributes}{@type})}

 

AttributeTypeAndValue           ::=     SEQUENCE {

        type            ATTRIBUTE.&id ({SupportedAttributes}),

        value   ATTRIBUTE.&Type ({SupportedAttributes}{@type})}

 

-- naming data types --

 

Name            ::=     CHOICE { -- only one possibility for now --

                                        rdnSequence  RDNSequence }

 

RDNSequence ::= SEQUENCE OF RelativeDistinguishedName

 

RelativeDistinguishedName       ::=

                SET SIZE (1 .. MAX) OF AttributeTypeAndValue

 

ID     ::=    OBJECT IDENTIFIER

 

-- ATTRIBUTE information object class specification

--  Note: This has been greatly simplified for PKIX !!

 

ATTRIBUTE               ::=     CLASS {

        &Type,

        &id                     OBJECT IDENTIFIER UNIQUE }

WITH SYNTAX {

        WITH SYNTAX &Type ID &id }

 

-- suggested naming attributes

--      Definition of the following information object set may be

--    augmented to meet local requirements.  Note that deleting

--    members of the set may prevent interoperability with

--    conforming implementations.

 

SupportedAttributes     ATTRIBUTE       ::=     {

                name | commonName | surname | givenName | initials |

                generationQualifier | dnQualifier | countryName |

                localityName | stateOrProvinceName | organizationName |

                        organizationalUnitName | title | pkcs9email }

 

name ATTRIBUTE  ::=     {

 

 

 

Housley, et. al.            Standards Track                    [Page 97]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

        WITH SYNTAX                     DirectoryString { ub-name }

        ID                              id-at-name }

 

commonName ATTRIBUTE    ::=     {

        WITH SYNTAX                     DirectoryString {ub-common-name}

        ID                              id-at-commonName }

 

surname ATTRIBUTE       ::=             {

        WITH SYNTAX                     DirectoryString {ub-name}

        ID                              id-at-surname }

 

givenName ATTRIBUTE     ::=             {

        WITH SYNTAX                     DirectoryString {ub-name}

        ID                              id-at-givenName }

 

initials ATTRIBUTE      ::=             {

        WITH SYNTAX                     DirectoryString {ub-name}

        ID                              id-at-initials }

 

generationQualifier ATTRIBUTE   ::=             {

        WITH SYNTAX                     DirectoryString {ub-name}

        ID                              id-at-generationQualifier}

 

dnQualifier ATTRIBUTE   ::=     {

        WITH SYNTAX                     PrintableString

        ID                              id-at-dnQualifier }

 

 

countryName ATTRIBUTE   ::=     {

        WITH SYNTAX                     PrintableString (SIZE (2))

                                                -- IS 3166 codes only

        ID                              id-at-countryName }

 

localityName ATTRIBUTE  ::=     {

        WITH SYNTAX             DirectoryString {ub-locality-name}

        ID                      id-at-localityName }

 

stateOrProvinceName ATTRIBUTE   ::=     {

        WITH SYNTAX             DirectoryString {ub-state-name}

        ID                      id-at-stateOrProvinceName }

 

organizationName ATTRIBUTE      ::=     {

        WITH SYNTAX             DirectoryString {ub-organization-name}

        ID                      id-at-organizationName }

 

organizationalUnitName ATTRIBUTE        ::=     {

        WITH SYNTAX  DirectoryString {ub-organizational-unit-name}

        ID                      id-at-organizationalUnitName }

 

 

 

Housley, et. al.            Standards Track                    [Page 98]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

title ATTRIBUTE ::=                     {

        WITH SYNTAX             DirectoryString {ub-title}

        ID                      id-at-title }

 

 -- Legacy attributes

 

pkcs9email ATTRIBUTE ::= {

        WITH SYNTAX                     PHGString,

        ID                              emailAddress }

 

PHGString ::= IA5String (SIZE(1..ub-emailaddress-length))

 

pkcs-9 OBJECT IDENTIFIER ::=

       { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) 9 }

 

emailAddress OBJECT IDENTIFIER ::= { pkcs-9 1 }

 

    -- object identifiers for Name type and directory attribute support

 

-- Object identifier assignments --

 

id-at   OBJECT IDENTIFIER       ::=     {joint-iso-ccitt(2) ds(5) 4}

 

-- Attributes --

 

id-at-commonName        OBJECT IDENTIFIER       ::=     {id-at 3}

id-at-surname           OBJECT IDENTIFIER       ::=     {id-at 4}

id-at-countryName       OBJECT IDENTIFIER       ::=     {id-at 6}

id-at-localityName      OBJECT IDENTIFIER       ::=     {id-at 7}

id-at-stateOrProvinceName     OBJECT IDENTIFIER ::= {id-at 8}

id-at-organizationName        OBJECT IDENTIFIER ::= {id-at 10}

id-at-organizationalUnitName  OBJECT IDENTIFIER ::= {id-at 11}

id-at-title             OBJECT IDENTIFIER       ::=     {id-at 12}

id-at-name              OBJECT IDENTIFIER       ::=     {id-at 41}

id-at-givenName         OBJECT IDENTIFIER       ::=     {id-at 42}

id-at-initials          OBJECT IDENTIFIER       ::=     {id-at 43}

id-at-generationQualifier   OBJECT IDENTIFIER   ::=     {id-at 44}

id-at-dnQualifier       OBJECT IDENTIFIER       ::=     {id-at 46}

 

-- Directory string type, used extensively in Name types --

 

DirectoryString { INTEGER:maxSize } ::= CHOICE {

        teletexString           TeletexString (SIZE (1..maxSize)),

        printableString         PrintableString (SIZE (1..maxSize)),

        universalString         UniversalString (SIZE (1..maxSize)),

        bmpString               BMPString (SIZE(1..maxSize)),

        utf8String              UTF8String (SIZE(1..maxSize))

                            }

 

 

 

Housley, et. al.            Standards Track                    [Page 99]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

     -- End of ASN.1 for Name type and directory attribute support --

 

     -- The ASN.1 in this section supports X.400 style names   --

     -- for implementations that use the x400Address component --

     -- of GeneralName.                                        --

 

ORAddress ::= SEQUENCE {

   built-in-standard-attributes BuiltInStandardAttributes,

   built-in-domain-defined-attributes

                        BuiltInDomainDefinedAttributes OPTIONAL,

   -- see also teletex-domain-defined-attributes

   extension-attributes ExtensionAttributes OPTIONAL }

 

--  The OR-address is semantically absent from the OR-name if the

--  built-in-standard-attribute sequence is empty and the

--  built-in-domain-defined-attributes and extension-attributes are

--  both omitted.

 

--      Built-in Standard Attributes

 

BuiltInStandardAttributes ::= SEQUENCE {

   country-name CountryName OPTIONAL,

   administration-domain-name AdministrationDomainName OPTIONAL,

   network-address      [0] NetworkAddress OPTIONAL,

   -- see also extended-network-address

   terminal-identifier  [1] TerminalIdentifier OPTIONAL,

   private-domain-name  [2] PrivateDomainName OPTIONAL,

   organization-name    [3] OrganizationName OPTIONAL,

   -- see also teletex-organization-name

   numeric-user-identifier      [4] NumericUserIdentifier OPTIONAL,

   personal-name        [5] PersonalName OPTIONAL,

   -- see also teletex-personal-name

   organizational-unit-names    [6] OrganizationalUnitNames OPTIONAL

   -- see also teletex-organizational-unit-names -- }

 

CountryName ::= [APPLICATION 1] CHOICE {

   x121-dcc-code NumericString

                (SIZE (ub-country-name-numeric-length)),

   iso-3166-alpha2-code PrintableString

                (SIZE (ub-country-name-alpha-length)) }

 

AdministrationDomainName ::= [APPLICATION 2] CHOICE {

   numeric NumericString (SIZE (0..ub-domain-name-length)),

   printable PrintableString (SIZE (0..ub-domain-name-length)) }

 

NetworkAddress ::= X121Address

-- see also extended-network-address

 

 

 

 

Housley, et. al.            Standards Track                   [Page 100]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

X121Address ::= NumericString (SIZE (1..ub-x121-address-length))

 

TerminalIdentifier ::= PrintableString (SIZE (1..ub-terminal-id-length))

 

PrivateDomainName ::= CHOICE {

   numeric NumericString (SIZE (1..ub-domain-name-length)),

   printable PrintableString (SIZE (1..ub-domain-name-length)) }

 

OrganizationName ::= PrintableString

                           (SIZE (1..ub-organization-name-length))

-- see also teletex-organization-name

 

NumericUserIdentifier ::= NumericString

                             (SIZE (1..ub-numeric-user-id-length))

 

PersonalName ::= SET {

   surname    [0] PrintableString (SIZE (1..ub-surname-length)),

   given-name [1] PrintableString

                        (SIZE (1..ub-given-name-length)) OPTIONAL,

   initials   [2] PrintableString

                        (SIZE (1..ub-initials-length)) OPTIONAL,

   generation-qualifier [3] PrintableString

                (SIZE (1..ub-generation-qualifier-length)) OPTIONAL}

-- see also teletex-personal-name

 

OrganizationalUnitNames ::= SEQUENCE SIZE (1..ub-organizational-units)

                                        OF OrganizationalUnitName

-- see also teletex-organizational-unit-names

 

OrganizationalUnitName ::= PrintableString (SIZE

                        (1..ub-organizational-unit-name-length))

 

--      Built-in Domain-defined Attributes

BuiltInDomainDefinedAttributes ::= SEQUENCE SIZE

                                (1..ub-domain-defined-attributes) OF

                                BuiltInDomainDefinedAttribute

 

BuiltInDomainDefinedAttribute ::= SEQUENCE {

   type PrintableString (SIZE

                (1..ub-domain-defined-attribute-type-length)),

   value PrintableString (SIZE

                (1..ub-domain-defined-attribute-value-length)) }

 

--      Extension Attributes

 

ExtensionAttributes ::= SET SIZE (1..ub-extension-attributes)

                                        OF ExtensionAttribute

ExtensionAttribute ::= SEQUENCE {

 

 

 

Housley, et. al.            Standards Track                   [Page 101]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

        extension-attribute-type [0] EXTENSION-ATTRIBUTE.&id

                                        ({ExtensionAttributeTable}),

        extension-attribute-value [1] EXTENSION-ATTRIBUTE.&Type

             ({ExtensionAttributeTable} {@extension-attribute-type}) }

 

EXTENSION-ATTRIBUTE ::= CLASS {

        &id     INTEGER (0..ub-extension-attributes) UNIQUE,

        &Type }

WITH SYNTAX {&Type IDENTIFIED BY &id}

 

ExtensionAttributeTable EXTENSION-ATTRIBUTE ::= {

        common-name |

        teletex-common-name |

        teletex-organization-name |

        teletex-personal-name |

        teletex-organizational-unit-names |

        teletex-domain-defined-attributes |

        pds-name |

        physical-delivery-country-name |

        postal-code |

        physical-delivery-office-name |

        physical-delivery-office-number |

        extension-OR-address-components |

        physical-delivery-personal-name |

        physical-delivery-organization-name |

        extension-physical-delivery-address-components |

        unformatted-postal-address |

        street-address |

        post-office-box-address |

        poste-restante-address |

        unique-postal-name |

        local-postal-attributes |

        extended-network-address |

        terminal-type }

 

--      Extension Standard Attributes

 

common-name EXTENSION-ATTRIBUTE ::= {CommonName IDENTIFIED BY 1}

 

CommonName ::= PrintableString (SIZE (1..ub-common-name-length))

 

teletex-common-name EXTENSION-ATTRIBUTE ::=

                {TeletexCommonName IDENTIFIED BY 2}

 

TeletexCommonName ::= TeletexString (SIZE (1..ub-common-name-length))

 

teletex-organization-name EXTENSION-ATTRIBUTE ::=

                {TeletexOrganizationName IDENTIFIED BY 3}

 

 

 

Housley, et. al.            Standards Track                   [Page 102]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

TeletexOrganizationName ::=

                TeletexString (SIZE (1..ub-organization-name-length))

 

teletex-personal-name EXTENSION-ATTRIBUTE ::=

                {TeletexPersonalName IDENTIFIED BY 4}

 

TeletexPersonalName ::= SET {

   surname [0] TeletexString (SIZE (1..ub-surname-length)),

   given-name [1] TeletexString

                (SIZE (1..ub-given-name-length)) OPTIONAL,

   initials [2] TeletexString (SIZE (1..ub-initials-length)) OPTIONAL,

   generation-qualifier [3] TeletexString (SIZE

                (1..ub-generation-qualifier-length)) OPTIONAL }

 

teletex-organizational-unit-names EXTENSION-ATTRIBUTE ::=

   {TeletexOrganizationalUnitNames IDENTIFIED BY 5}

 

TeletexOrganizationalUnitNames ::= SEQUENCE SIZE

        (1..ub-organizational-units) OF TeletexOrganizationalUnitName

 

TeletexOrganizationalUnitName ::= TeletexString

                        (SIZE (1..ub-organizational-unit-name-length))

 

pds-name EXTENSION-ATTRIBUTE ::= {PDSName IDENTIFIED BY 7}

 

PDSName ::= PrintableString (SIZE (1..ub-pds-name-length))

 

physical-delivery-country-name EXTENSION-ATTRIBUTE ::=

   {PhysicalDeliveryCountryName IDENTIFIED BY 8}

 

PhysicalDeliveryCountryName ::= CHOICE {

   x121-dcc-code NumericString (SIZE (ub-country-name-numeric-length)),

   iso-3166-alpha2-code PrintableString

                        (SIZE (ub-country-name-alpha-length)) }

 

postal-code EXTENSION-ATTRIBUTE ::= {PostalCode IDENTIFIED BY 9}

 

PostalCode ::= CHOICE {

   numeric-code NumericString (SIZE (1..ub-postal-code-length)),

   printable-code PrintableString (SIZE (1..ub-postal-code-length)) }

 

physical-delivery-office-name EXTENSION-ATTRIBUTE ::=

                        {PhysicalDeliveryOfficeName IDENTIFIED BY 10}

 

PhysicalDeliveryOfficeName ::= PDSParameter

 

physical-delivery-office-number EXTENSION-ATTRIBUTE ::=

   {PhysicalDeliveryOfficeNumber IDENTIFIED BY 11}

 

 

 

Housley, et. al.            Standards Track                   [Page 103]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

PhysicalDeliveryOfficeNumber ::= PDSParameter

 

extension-OR-address-components EXTENSION-ATTRIBUTE ::=

   {ExtensionORAddressComponents IDENTIFIED BY 12}

 

ExtensionORAddressComponents ::= PDSParameter

 

physical-delivery-personal-name EXTENSION-ATTRIBUTE ::=

   {PhysicalDeliveryPersonalName IDENTIFIED BY 13}

 

PhysicalDeliveryPersonalName ::= PDSParameter

 

physical-delivery-organization-name EXTENSION-ATTRIBUTE ::=

   {PhysicalDeliveryOrganizationName IDENTIFIED BY 14}

 

PhysicalDeliveryOrganizationName ::= PDSParameter

 

extension-physical-delivery-address-components EXTENSION-ATTRIBUTE ::=

   {ExtensionPhysicalDeliveryAddressComponents IDENTIFIED BY 15}

 

ExtensionPhysicalDeliveryAddressComponents ::= PDSParameter

 

unformatted-postal-address EXTENSION-ATTRIBUTE ::=

                        {UnformattedPostalAddress IDENTIFIED BY 16}

 

UnformattedPostalAddress ::= SET {

   printable-address SEQUENCE SIZE (1..ub-pds-physical-address-lines) OF

           PrintableString (SIZE (1..ub-pds-parameter-length)) OPTIONAL,

   teletex-string TeletexString (SIZE

                         (1..ub-unformatted-address-length)) OPTIONAL }

 

street-address EXTENSION-ATTRIBUTE ::=

                {StreetAddress IDENTIFIED BY 17}

 

StreetAddress ::= PDSParameter

 

post-office-box-address EXTENSION-ATTRIBUTE ::=

                {PostOfficeBoxAddress IDENTIFIED BY 18}

 

PostOfficeBoxAddress ::= PDSParameter

 

poste-restante-address EXTENSION-ATTRIBUTE ::=

                {PosteRestanteAddress IDENTIFIED BY 19}

 

PosteRestanteAddress ::= PDSParameter

 

unique-postal-name EXTENSION-ATTRIBUTE ::=

                {UniquePostalName IDENTIFIED BY 20}

 

 

 

Housley, et. al.            Standards Track                   [Page 104]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

UniquePostalName ::= PDSParameter

 

local-postal-attributes EXTENSION-ATTRIBUTE ::=

                {LocalPostalAttributes IDENTIFIED BY 21}

 

LocalPostalAttributes ::= PDSParameter

 

PDSParameter ::= SET {

   printable-string PrintableString

            (SIZE(1..ub-pds-parameter-length)) OPTIONAL,

   teletex-string TeletexString

            (SIZE(1..ub-pds-parameter-length)) OPTIONAL }

 

extended-network-address EXTENSION-ATTRIBUTE ::=

                {ExtendedNetworkAddress IDENTIFIED BY 22}

 

ExtendedNetworkAddress ::= CHOICE {

        e163-4-address SEQUENCE {

                number [0] NumericString

                   (SIZE (1..ub-e163-4-number-length)),

                sub-address [1] NumericString

                   (SIZE (1..ub-e163-4-sub-address-length)) OPTIONAL},

        psap-address [0] PresentationAddress }

 

PresentationAddress ::= SEQUENCE {

        pSelector       [0] EXPLICIT OCTET STRING OPTIONAL,

        sSelector       [1] EXPLICIT OCTET STRING OPTIONAL,

        tSelector       [2] EXPLICIT OCTET STRING OPTIONAL,

        nAddresses      [3] EXPLICIT SET SIZE (1..MAX) OF OCTET STRING}

 

 

terminal-type EXTENSION-ATTRIBUTE ::= {TerminalType IDENTIFIED BY 23}

 

TerminalType ::= INTEGER {

   telex (3),

   teletex (4),

   g3-facsimile (5),

   g4-facsimile (6),

   ia5-terminal (7),

   videotex (8) } (0..ub-integer-options)

 

--      Extension Domain-defined Attributes

 

teletex-domain-defined-attributes EXTENSION-ATTRIBUTE ::=

   {TeletexDomainDefinedAttributes IDENTIFIED BY 6}

 

TeletexDomainDefinedAttributes ::= SEQUENCE SIZE

   (1..ub-domain-defined-attributes) OF TeletexDomainDefinedAttribute

 

 

 

Housley, et. al.            Standards Track                   [Page 105]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

TeletexDomainDefinedAttribute ::= SEQUENCE {

    type TeletexString

         (SIZE (1..ub-domain-defined-attribute-type-length)),

    value TeletexString

         (SIZE (1..ub-domain-defined-attribute-value-length)) }

 

--  specifications of Upper Bounds

--  shall be regarded as mandatory

--  from Annex B of ITU-T X.411

--  Reference Definition of MTS Parameter Upper Bounds

 

--      Upper Bounds

ub-name INTEGER ::=     32768

ub-common-name  INTEGER ::=     64

ub-locality-name        INTEGER ::=     128

ub-state-name   INTEGER ::=     128

ub-organization-name    INTEGER ::=     64

ub-organizational-unit-name     INTEGER ::=     64

ub-title        INTEGER ::=     64

ub-match        INTEGER ::=     128

 

ub-emailaddress-length INTEGER ::= 128

 

ub-common-name-length INTEGER ::= 64

ub-country-name-alpha-length INTEGER ::= 2

ub-country-name-numeric-length INTEGER ::= 3

ub-domain-defined-attributes INTEGER ::= 4

ub-domain-defined-attribute-type-length INTEGER ::= 8

ub-domain-defined-attribute-value-length INTEGER ::= 128

ub-domain-name-length INTEGER ::= 16

ub-extension-attributes INTEGER ::= 256

ub-e163-4-number-length INTEGER ::= 15

ub-e163-4-sub-address-length INTEGER ::= 40

ub-generation-qualifier-length INTEGER ::= 3

ub-given-name-length INTEGER ::= 16

ub-initials-length INTEGER ::= 5

ub-integer-options INTEGER ::= 256

ub-numeric-user-id-length INTEGER ::= 32

ub-organization-name-length INTEGER ::= 64

ub-organizational-unit-name-length INTEGER ::= 32

ub-organizational-units INTEGER ::= 4

ub-pds-name-length INTEGER ::= 16

ub-pds-parameter-length INTEGER ::= 30

ub-pds-physical-address-lines INTEGER ::= 6

ub-postal-code-length INTEGER ::= 16

ub-surname-length INTEGER ::= 40

ub-terminal-id-length INTEGER ::= 24

ub-unformatted-address-length INTEGER ::= 180

 

 

 

Housley, et. al.            Standards Track                   [Page 106]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

ub-x121-address-length INTEGER ::= 16

 

-- Note - upper bounds on TeletexString are measured in characters.

-- A significantly greater number of octets will be required to hold

-- such a value.  As a minimum, 16 octets, or twice the specified upper

-- bound, whichever is the larger, should be allowed.

 

END

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Housley, et. al.            Standards Track                   [Page 107]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

B.2 Implicitly Tagged Module, 1993 Syntax

 

 

PKIX1Implicit93  {iso(1) identified-organization(3) dod(6) internet(1)

   security(5) mechanisms(5) pkix(7) id-mod(0) id-pkix1-implicit-93(4)}

 

DEFINITIONS IMPLICIT TAGS::=

 

BEGIN

 

--EXPORTS ALL --

 

IMPORTS

        id-pe, id-qt, id-kp, id-ad, id-qt-unotice,

                ORAddress, Name, RelativeDistinguishedName,

                CertificateSerialNumber, CertificateList,

                AlgorithmIdentifier, ub-name, DirectoryString,

                Attribute, EXTENSION

                FROM PKIX1Explicit93 {iso(1) identified-organization(3)

                dod(6) internet(1) security(5) mechanisms(5) pkix(7)

                id-mod(0) id-pkix1-explicit-93(3)};

 

-- Key and policy information extensions --

 

authorityKeyIdentifier EXTENSION ::= {

        SYNTAX          AuthorityKeyIdentifier

        IDENTIFIED BY   id-ce-authorityKeyIdentifier }

 

AuthorityKeyIdentifier ::= SEQUENCE {

    keyIdentifier               [0] KeyIdentifier            OPTIONAL,

    authorityCertIssuer         [1] GeneralNames             OPTIONAL,

    authorityCertSerialNumber   [2] CertificateSerialNumber  OPTIONAL }

        ( WITH COMPONENTS       {..., authorityCertIssuer PRESENT,

                                authorityCertSerialNumber PRESENT} |

         WITH COMPONENTS        {..., authorityCertIssuer ABSENT,

                                authorityCertSerialNumber ABSENT} )

 

KeyIdentifier ::= OCTET STRING

 

subjectKeyIdentifier EXTENSION ::= {

        SYNTAX          SubjectKeyIdentifier

        IDENTIFIED BY   id-ce-subjectKeyIdentifier }

 

SubjectKeyIdentifier ::= KeyIdentifier

 

keyUsage EXTENSION ::= {

        SYNTAX  KeyUsage

        IDENTIFIED BY id-ce-keyUsage }

 

 

 

Housley, et. al.            Standards Track                   [Page 108]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

KeyUsage ::= BIT STRING {

        digitalSignature     (0),

        nonRepudiation       (1),

        keyEncipherment      (2),

        dataEncipherment     (3),

        keyAgreement         (4),

        keyCertSign          (5),

        cRLSign              (6),

      encipherOnly         (7),

      decipherOnly         (8) }

 

extendedKeyUsage EXTENSION ::= {

        SYNTAX SEQUENCE SIZE (1..MAX) OF KeyPurposeId

        IDENTIFIED BY id-ce-extKeyUsage }

 

KeyPurposeId ::= OBJECT IDENTIFIER

 

-- PKIX-defined extended key purpose OIDs

id-kp-serverAuth      OBJECT IDENTIFIER ::= { id-kp 1 }

id-kp-clientAuth      OBJECT IDENTIFIER ::= { id-kp 2 }

id-kp-codeSigning     OBJECT IDENTIFIER ::= { id-kp 3 }

id-kp-emailProtection OBJECT IDENTIFIER ::= { id-kp 4 }

id-kp-ipsecEndSystem  OBJECT IDENTIFIER ::= { id-kp 5 }

id-kp-ipsecTunnel     OBJECT IDENTIFIER ::= { id-kp 6 }

id-kp-ipsecUser       OBJECT IDENTIFIER ::= { id-kp 7 }

id-kp-timeStamping    OBJECT IDENTIFIER ::= { id-kp 8 }

 

privateKeyUsagePeriod EXTENSION ::= {

        SYNTAX  PrivateKeyUsagePeriod

        IDENTIFIED BY { id-ce-privateKeyUsagePeriod } }

 

PrivateKeyUsagePeriod ::= SEQUENCE {

        notBefore       [0]     GeneralizedTime OPTIONAL,

        notAfter        [1]     GeneralizedTime OPTIONAL }

        ( WITH COMPONENTS       {..., notBefore PRESENT} |

        WITH COMPONENTS         {..., notAfter PRESENT} )

 

certificatePolicies EXTENSION ::= {

        SYNTAX  CertificatePoliciesSyntax

        IDENTIFIED BY id-ce-certificatePolicies }

 

CertificatePoliciesSyntax ::=

                SEQUENCE SIZE (1..MAX) OF PolicyInformation

 

PolicyInformation ::= SEQUENCE {

        policyIdentifier   CertPolicyId,

        policyQualifiers   SEQUENCE SIZE (1..MAX) OF

                PolicyQualifierInfo OPTIONAL }

 

 

 

Housley, et. al.            Standards Track                   [Page 109]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

CertPolicyId ::= OBJECT IDENTIFIER

 

PolicyQualifierInfo ::= SEQUENCE {

        policyQualifierId       CERT-POLICY-QUALIFIER.&id

                                    ({SupportedPolicyQualifiers}),

        qualifier               CERT-POLICY-QUALIFIER.&Qualifier

                                    ({SupportedPolicyQualifiers}

                                    {@policyQualifierId})OPTIONAL }

 

SupportedPolicyQualifiers CERT-POLICY-QUALIFIER ::= { noticeToUser |

                                                      pointerToCPS }

 

CERT-POLICY-QUALIFIER ::= CLASS {

        &id             OBJECT IDENTIFIER UNIQUE,

        &Qualifier      OPTIONAL }

WITH SYNTAX {

        POLICY-QUALIFIER-ID     &id

        [QUALIFIER-TYPE &Qualifier] }

 

policyMappings EXTENSION ::= {

        SYNTAX  PolicyMappingsSyntax

        IDENTIFIED BY id-ce-policyMappings }

 

PolicyMappingsSyntax ::= SEQUENCE SIZE (1..MAX) OF SEQUENCE {

        issuerDomainPolicy           CertPolicyId,

        subjectDomainPolicy          CertPolicyId }

 

-- Certificate subject and certificate issuer attributes extensions --

 

subjectAltName EXTENSION ::= {

        SYNTAX  GeneralNames

        IDENTIFIED BY id-ce-subjectAltName }

 

GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName

 

GeneralName ::= CHOICE {

        otherName                   [0] INSTANCE OF OTHER-NAME,

        rfc822Name                  [1] IA5String,

        dNSName                     [2] IA5String,

        x400Address                 [3] ORAddress,

        directoryName               [4] Name,

        ediPartyName                [5] EDIPartyName,

        uniformResourceIdentifier   [6] IA5String,

        iPAddress                   [7] OCTET STRING,

        registeredID                [8] OBJECT IDENTIFIER }

 

OTHER-NAME ::= TYPE-IDENTIFIER

 

 

 

 

Housley, et. al.            Standards Track                   [Page 110]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

EDIPartyName ::= SEQUENCE {

        nameAssigner        [0] DirectoryString {ub-name} OPTIONAL,

        partyName           [1] DirectoryString {ub-name} }

 

issuerAltName EXTENSION ::= {

        SYNTAX  GeneralNames

        IDENTIFIED BY id-ce-issuerAltName }

 

subjectDirectoryAttributes EXTENSION ::= {

        SYNTAX  AttributesSyntax

        IDENTIFIED BY id-ce-subjectDirectoryAttributes }

 

AttributesSyntax ::= SEQUENCE SIZE (1..MAX) OF Attribute

 

-- Certification path constraints extensions --

 

basicConstraints EXTENSION ::= {

        SYNTAX  BasicConstraintsSyntax

        IDENTIFIED BY id-ce-basicConstraints }

 

BasicConstraintsSyntax ::= SEQUENCE {

        cA                      BOOLEAN DEFAULT FALSE,

        pathLenConstraint       INTEGER (0..MAX) OPTIONAL }

 

nameConstraints EXTENSION ::= {

        SYNTAX  NameConstraintsSyntax

        IDENTIFIED BY id-ce-nameConstraints }

 

NameConstraintsSyntax ::= SEQUENCE {

        permittedSubtrees       [0]     GeneralSubtrees OPTIONAL,

        excludedSubtrees        [1]     GeneralSubtrees OPTIONAL }

 

GeneralSubtrees ::= SEQUENCE SIZE (1..MAX) OF GeneralSubtree

 

GeneralSubtree ::= SEQUENCE {

        base                    GeneralName,

        minimum         [0]     BaseDistance DEFAULT 0,

        maximum         [1]     BaseDistance OPTIONAL }

 

BaseDistance ::= INTEGER (0..MAX)

 

policyConstraints EXTENSION ::= {

        SYNTAX  PolicyConstraintsSyntax

        IDENTIFIED BY id-ce-policyConstraints }

 

PolicyConstraintsSyntax ::= SEQUENCE {

        requireExplicitPolicy   [0] SkipCerts OPTIONAL,

        inhibitPolicyMapping    [1] SkipCerts OPTIONAL }

 

 

 

Housley, et. al.            Standards Track                   [Page 111]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

SkipCerts ::= INTEGER (0..MAX)

 

-- Basic CRL extensions --

 

cRLNumber EXTENSION ::= {

        SYNTAX  CRLNumber

        IDENTIFIED BY id-ce-cRLNumber }

 

CRLNumber ::= INTEGER (0..MAX)

 

reasonCode EXTENSION ::= {

        SYNTAX  CRLReason

        IDENTIFIED BY id-ce-reasonCode }

 

CRLReason ::= ENUMERATED {

        unspecified             (0),

        keyCompromise           (1),

        cACompromise            (2),

        affiliationChanged      (3),

        superseded              (4),

        cessationOfOperation    (5),

        certificateHold         (6),

        removeFromCRL           (8) }

 

instructionCode EXTENSION ::= {

        SYNTAX  HoldInstruction

        IDENTIFIED BY id-ce-instructionCode }

 

HoldInstruction ::= OBJECT IDENTIFIER

 

-- holdinstructions described in this specification, from ANSI x9

 

-- ANSI x9 arc holdinstruction arc

holdInstruction OBJECT IDENTIFIER ::= {

     joint-iso-ccitt(2) member-body(2) us(840) x9cm(10040) 2}

 

-- ANSI X9 holdinstructions referenced by this standard

id-holdinstruction-none OBJECT IDENTIFIER ::= {holdInstruction 1}

id-holdinstruction-callissuer OBJECT IDENTIFIER ::= {holdInstruction 2}

id-holdinstruction-reject OBJECT IDENTIFIER ::= {holdInstruction 3}

 

invalidityDate EXTENSION ::= {

        SYNTAX  GeneralizedTime

        IDENTIFIED BY id-ce-invalidityDate }

 

-- CRL distribution points and delta-CRL extensions --

 

cRLDistributionPoints EXTENSION ::= {

 

 

 

Housley, et. al.            Standards Track                   [Page 112]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

        SYNTAX  CRLDistPointsSyntax

        IDENTIFIED BY id-ce-cRLDistributionPoints }

 

CRLDistPointsSyntax ::= SEQUENCE SIZE (1..MAX) OF DistributionPoint

 

DistributionPoint ::= SEQUENCE {

        distributionPoint       [0]     DistributionPointName OPTIONAL,

        reasons         [1]     ReasonFlags OPTIONAL,

        cRLIssuer               [2]     GeneralNames OPTIONAL }

 

DistributionPointName ::= CHOICE {

        fullName                [0]     GeneralNames,

        nameRelativeToCRLIssuer [1]     RelativeDistinguishedName }

 

ReasonFlags ::= BIT STRING {

        unused                  (0),

        keyCompromise           (1),

        caCompromise            (2),

        affiliationChanged      (3),

        superseded              (4),

        cessationOfOperation    (5),

        certificateHold         (6) }

 

issuingDistributionPoint EXTENSION ::= {

        SYNTAX  IssuingDistPointSyntax

        IDENTIFIED BY id-ce-issuingDistributionPoint }

 

IssuingDistPointSyntax ::= SEQUENCE {

        distributionPoint       [0] DistributionPointName OPTIONAL,

        onlyContainsUserCerts   [1] BOOLEAN DEFAULT FALSE,

        onlyContainsCACerts     [2] BOOLEAN DEFAULT FALSE,

        onlySomeReasons         [3] ReasonFlags OPTIONAL,

        indirectCRL             [4] BOOLEAN DEFAULT FALSE }

 

certificateIssuer EXTENSION ::= {

        SYNTAX          GeneralNames

        IDENTIFIED BY id-ce-certificateIssuer }

 

deltaCRLIndicator EXTENSION ::= {

        SYNTAX          BaseCRLNumber

        IDENTIFIED BY id-ce-deltaCRLIndicator }

 

BaseCRLNumber ::= CRLNumber

 

-- Object identifier assignments for ISO certificate extensions --

id-ce   OBJECT IDENTIFIER       ::=     {joint-iso-ccitt(2) ds(5) 29}

 

id-ce-subjectDirectoryAttributes   OBJECT IDENTIFIER ::= {id-ce 9}

 

 

 

Housley, et. al.            Standards Track                   [Page 113]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

id-ce-subjectKeyIdentifier         OBJECT IDENTIFIER ::= {id-ce 14}

id-ce-keyUsage                     OBJECT IDENTIFIER ::= {id-ce 15}

id-ce-privateKeyUsagePeriod        OBJECT IDENTIFIER ::= {id-ce 16}

id-ce-subjectAltName               OBJECT IDENTIFIER ::= {id-ce 17}

id-ce-issuerAltName                OBJECT IDENTIFIER ::= {id-ce 18}

id-ce-basicConstraints             OBJECT IDENTIFIER ::= {id-ce 19}

id-ce-cRLNumber                    OBJECT IDENTIFIER ::= {id-ce 20}

id-ce-reasonCode                   OBJECT IDENTIFIER ::= {id-ce 21}

id-ce-instructionCode              OBJECT IDENTIFIER ::= {id-ce 23}

id-ce-invalidityDate               OBJECT IDENTIFIER ::= {id-ce 24}

id-ce-deltaCRLIndicator            OBJECT IDENTIFIER ::= {id-ce 27}

id-ce-issuingDistributionPoint     OBJECT IDENTIFIER ::= {id-ce 28}

id-ce-certificateIssuer            OBJECT IDENTIFIER ::= {id-ce 29}

id-ce-nameConstraints              OBJECT IDENTIFIER ::= {id-ce 30}

id-ce-cRLDistributionPoints        OBJECT IDENTIFIER ::= {id-ce 31}

id-ce-certificatePolicies          OBJECT IDENTIFIER ::= {id-ce 32}

id-ce-policyMappings               OBJECT IDENTIFIER ::= {id-ce 33}

id-ce-policyConstraints            OBJECT IDENTIFIER ::= {id-ce 36}

id-ce-authorityKeyIdentifier       OBJECT IDENTIFIER ::= {id-ce 35}

id-ce-extKeyUsage                  OBJECT IDENTIFIER ::= {id-ce 37}

 

-- PKIX 1 extensions

 

authorityInfoAccess EXTENSION ::= {

        SYNTAX  AuthorityInfoAccessSyntax

        IDENTIFIED BY id-pe-authorityInfoAccess }

 

AuthorityInfoAccessSyntax  ::=

        SEQUENCE SIZE (1..MAX) OF AccessDescription

 

AccessDescription  ::=  SEQUENCE {

        accessMethod          OBJECT IDENTIFIER,

        accessLocation        GeneralName  }

 

id-pe-authorityInfoAccess OBJECT IDENTIFIER ::= { id-pe 1 }

 

id-ad-ocsp      OBJECT IDENTIFIER ::= { id-ad 1 }

id-ad-caIssuers OBJECT IDENTIFIER ::= { id-ad 2 }

 

-- PKIX policy qualifier definitions

 

noticeToUser CERT-POLICY-QUALIFIER ::= {

     POLICY-QUALIFIER-ID    id-qt-cps QUALIFIER-TYPE       CPSuri}

 

pointerToCPS CERT-POLICY-QUALIFIER ::= {

     POLICY-QUALIFIER-ID    id-qt-unotice QUALIFIER-TYPE   UserNotice}

 

id-qt-cps      OBJECT IDENTIFIER ::=  { id-qt 1 }

 

 

 

Housley, et. al.            Standards Track                   [Page 114]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

id-qt-unotice  OBJECT IDENTIFIER ::=  { id-qt 2 }

 

CPSuri ::= IA5String

 

UserNotice ::= SEQUENCE {

     noticeRef        NoticeReference OPTIONAL,

     explicitText     DisplayText OPTIONAL}

 

NoticeReference ::= SEQUENCE {

     organization     DisplayText,

     noticeNumbers    SEQUENCE OF INTEGER }

 

DisplayText ::= CHOICE {

     visibleString    VisibleString  (SIZE (1..200)),

     bmpString        BMPString      (SIZE (1..200)),

     utf8String       UTF8String     (SIZE (1..200)) }

 

 

END

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Housley, et. al.            Standards Track                   [Page 115]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

Appendix C. ASN.1 Notes

 

   The construct "SEQUENCE SIZE (1..MAX) OF" appears in several ASN.1

   constructs. A valid ASN.1 sequence will have zero or more entries.

   The SIZE (1..MAX) construct constrains the sequence to have at least

   one entry. MAX indicates the upper bound is unspecified.

   Implementations are free to choose an upper bound that suits their

   environment.

 

   The construct "positiveInt ::= INTEGER (0..MAX)" defines positiveInt

   as a subtype of INTEGER containing integers greater than or equal to

   zero.  The upper bound is unspecified. Implementations are free to

   select an upper bound that suits their environment.

 

   The character string type PrintableString supports a very basic Latin

   character set:  the lower case letters 'a' through 'z', upper case

   letters 'A' through 'Z', the digits '0' through '9', eleven special

   characters ' " ( ) + , - . / : ? and space.

 

   The character string type TeletexString is a superset of

   PrintableString.  TeletexString supports a fairly standard (ascii-

   like) Latin character set, Latin characters with non-spacing accents

   and Japanese characters.

 

   The character string type UniversalString supports any of the

   characters allowed by ISO 10646-1. ISO 10646 is the Universal

   multiple-octet coded Character Set (UCS).  ISO 10646-1 specifes the

   architecture and the "basic multilingual plane" - a large standard

   character set which includes all major world character standards.

 

   The character string type UTF8String will be introduced in the 1998

   version of ASN.1.  UTF8String is a universal type and has been

   assigned tag number 12.  The content of UTF8String was defined by RFC

   2044 and updated in RFC 2279, "UTF-8, a transformation Format of ISP

   10646."  ISO is expected to formally add UTF8String to the list of

   choices for DirectoryString in 1998 as well.

 

   In anticipation of these changes, and in conformance with IETF Best

   Practices codified in RFC 2277, IETF Policy on Character Sets and

   Languages, this document includes UTF8String as a choice in

   DirectoryString and the CPS qualifier extensions.

 

 

 

 

 

 

 

 

 

 

Housley, et. al.            Standards Track                   [Page 116]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

Appendix D. Examples

 

   This section contains four examples: three certificates and a CRL.

   The first two certificates and the CRL comprise a minimal

   certification path.

 

   Section D.1 contains an annotated hex dump of a "self-signed"

   certificate issued by a CA whose distinguished name is

   cn=us,o=gov,ou=nist.  The certificate contains a DSA public key with

   parameters, and is signed by the corresponding DSA private key.

 

   Section D.2 contains an annotated hex dump of an end-entity

   certificate.  The end entity certificate contains a DSA public key,

   and is signed by the private key corresponding to the "self-signed"

   certificate in section D.1.

 

   Section D.3 contains a dump of an end entity certificate which

   contains an RSA public key and is signed with RSA and MD5.  This

   certificate is not part of the minimal certification path.

 

   Section D.4 contains an annotated hex dump of a CRL.  The CRL is

   issued by the CA whose distinguished name is cn=us,o=gov,ou=nist and

   the list of revoked certificates includes the end entity certificate

   presented in D.2.

 

D.1 Certificate

 

   This section contains an annotated hex dump of a 699 byte version 3

   certificate.  The certificate contains the following information:

   (a) the serial number is 17 (11 hex);

   (b) the certificate is signed with DSA and the SHA-1 hash algorithm;

   (c) the issuer's distinguished name is OU=nist; O=gov; C=US

   (d) and the subject's distinguished name is OU=nist; O=gov; C=US

   (e) the certificate was issued on June 30, 1997 and will expire on

   December 31, 1997;

   (f) the certificate contains a 1024 bit DSA public key with

   parameters;

   (g) the certificate contains a subject key identifier extension; and

   (h) the certificate is a CA certificate (as indicated through the

   basic constraints extension.)

 

0000 30 82 02 b7  695: SEQUENCE

0004 30 82 02 77  631: . SEQUENCE    tbscertificate

0008 a0 03          3: . . [0]

0010 02 01          1: . . . INTEGER 2

                     : 02

0013 02 01          1: . . INTEGER 17

                     : 11

 

 

 

Housley, et. al.            Standards Track                   [Page 117]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

0016 30 09          9: . . SEQUENCE

0018 06 07          7: . . . OID 1.2.840.10040.4.3: dsa-with-sha

                     : 2a 86 48 ce 38 04 03

0027 30 2a         42: . . SEQUENCE

0029 31 0b         11: . . . SET

0031 30 09          9: . . . . SEQUENCE

0033 06 03          3: . . . . . OID 2.5.4.6: C

                     : 55 04 06

0038 13 02          2: . . . . . PrintableString  'US'

                     : 55 53

0042 31 0c         12: . . . SET

0044 30 0a         10: . . . . SEQUENCE

0046 06 03          3: . . . . . OID 2.5.4.10: O

                     : 55 04 0a

0051 13 03          3: . . . . . PrintableString  'gov'

                     : 67 6f 76

0056 31 0d         13: . . . SET

0058 30 0b         11: . . . . SEQUENCE

0060 06 03          3: . . . . . OID 2.5.4.11: OU

                     : 55 04 0b

0065 13 04          4: . . . . . PrintableString  'nist'

                     : 6e 69 73 74

0071 30 1e         30: . . SEQUENCE

0073 17 0d         13: . . . UTCTime  '970630000000Z'

                     : 39 37 30 36 33 30 30 30 30 30 30 30 5a

0088 17 0d         13: . . . UTCTime  '971231000000Z'

                     : 39 37 31 32 33 31 30 30 30 30 30 30 5a

0103 30 2a         42: . . SEQUENCE

0105 31 0b         11: . . . SET

0107 30 09          9: . . . . SEQUENCE

0109 06 03          3: . . . . . OID 2.5.4.6: C

                     : 55 04 06

0114 13 02          2: . . . . . PrintableString  'US'

                     : 55 53

0118 31 0c         12: . . . SET

0120 30 0a         10: . . . . SEQUENCE

0122 06 03          3: . . . . . OID 2.5.4.10: O

                     : 55 04 0a

0127 13 03          3: . . . . . PrintableString  'gov'

                     : 67 6f 76

0132 31 0d         13: . . . SET

0134 30 0b         11: . . . . SEQUENCE

0136 06 03          3: . . . . . OID 2.5.4.11: OU

                     : 55 04 0b

0141 13 04          4: . . . . . PrintableString  'nist'

                     : 6e 69 73 74

0147 30 82 01 b4  436: . . SEQUENCE

0151 30 82 01 29  297: . . . SEQUENCE

 

 

 

Housley, et. al.            Standards Track                   [Page 118]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

0155 06 07          7: . . . . OID 1.2.840.10040.4.1: dsa

                     : 2a 86 48 ce 38 04 01

0164 30 82 01 1c  284: . . . . SEQUENCE

0168 02 81 80     128: . . . . . INTEGER

                     : d4 38 02 c5 35 7b d5 0b a1 7e 5d 72 59 63 55 d3

                     : 45 56 ea e2 25 1a 6b c5 a4 ab aa 0b d4 62 b4 d2

                     : 21 b1 95 a2 c6 01 c9 c3 fa 01 6f 79 86 83 3d 03

                     : 61 e1 f1 92 ac bc 03 4e 89 a3 c9 53 4a f7 e2 a6

                     : 48 cf 42 1e 21 b1 5c 2b 3a 7f ba be 6b 5a f7 0a

                     : 26 d8 8e 1b eb ec bf 1e 5a 3f 45 c0 bd 31 23 be

                     : 69 71 a7 c2 90 fe a5 d6 80 b5 24 dc 44 9c eb 4d

                     : f9 da f0 c8 e8 a2 4c 99 07 5c 8e 35 2b 7d 57 8d

0299 02 14         20: . . . . . INTEGER

                     : a7 83 9b f3 bd 2c 20 07 fc 4c e7 e8 9f f3 39 83

                     : 51 0d dc dd

0321 02 81 80     128: . . . . . INTEGER

                     : 0e 3b 46 31 8a 0a 58 86 40 84 e3 a1 22 0d 88 ca

                     : 90 88 57 64 9f 01 21 e0 15 05 94 24 82 e2 10 90

                     : d9 e1 4e 10 5c e7 54 6b d4 0c 2b 1b 59 0a a0 b5

                     : a1 7d b5 07 e3 65 7c ea 90 d8 8e 30 42 e4 85 bb

                     : ac fa 4e 76 4b 78 0e df 6c e5 a6 e1 bd 59 77 7d

                     : a6 97 59 c5 29 a7 b3 3f 95 3e 9d f1 59 2d f7 42

                     : 87 62 3f f1 b8 6f c7 3d 4b b8 8d 74 c4 ca 44 90

                     : cf 67 db de 14 60 97 4a d1 f7 6d 9e 09 94 c4 0d

0452 03 81 84     132: . . . BIT STRING  (0 unused bits)

                     : 02 81 80 aa 98 ea 13 94 a2 db f1 5b 7f 98 2f 78

                     : e7 d8 e3 b9 71 86 f6 80 2f 40 39 c3 da 3b 4b 13

                     : 46 26 ee 0d 56 c5 a3 3a 39 b7 7d 33 c2 6b 5c 77

                     : 92 f2 55 65 90 39 cd 1a 3c 86 e1 32 eb 25 bc 91

                     : c4 ff 80 4f 36 61 bd cc e2 61 04 e0 7e 60 13 ca

                     : c0 9c dd e0 ea 41 de 33 c1 f1 44 a9 bc 71 de cf

                     : 59 d4 6e da 44 99 3c 21 64 e4 78 54 9d d0 7b ba

                     : 4e f5 18 4d 5e 39 30 bf e0 d1 f6 f4 83 25 4f 14

                     : aa 71 e1

0587 a3 32         50: . . [3]

0589 30 30         48: . . . SEQUENCE

0591 30 0f          9: . . . . SEQUENCE

0593 06 03          3: . . . . . OID 2.5.29.19: basicConstraints

                     : 55 1d 13

0598 01 01          1: . . . . . TRUE

                     : ff

0601 04 05          5: . . . . . OCTET STRING

                     : 30 03 01 01 ff

0608 30 1d         29: . SEQUENCE

0610 06 03          3: . . . . . OID 2.5.29.14: subjectKeyIdentifier

                     : 55 1d 0e

0615 04 16         22: . . . . . OCTET STRING

                     : 04 14 e7 26 c5 54 cd 5b a3 6f 35 68 95 aa d5 ff

 

 

 

Housley, et. al.            Standards Track                   [Page 119]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

                     : 1c 21 e4 22 75 d6

0639 30 09          9: . SEQUENCE

0641 06 07          7: . . OID 1.2.840.10040.4.3: dsa-with-sha

                     : 2a 86 48 ce 38 04 03

0650 03 2f         47: . BIT STRING  (0 unused bits)

                     : 30 2c 02 14 a0 66 c1 76 33 99 13 51 8d 93 64 2f

                     : ca 13 73 de 79 1a 7d 33 02 14 5d 90 f6 ce 92 4a

                     : bf 29 11 24 80 28 a6 5a 8e 73 b6 76 02 68

 

D.2 Certificate

 

   This section contains an annotated hex dump of a 730 byte version 3

   certificate.  The certificate contains the following information:

   (a) the serial number is 18 (12 hex);

   (b) the certificate is signed with DSA and the SHA-1 hash algorithm;

   (c) the issuer's distinguished name is OU=nist; O=gov; C=US

   (d) and the subject's distinguished name is CN=Tim Polk; OU=nist;

   O=gov; C=US

   (e) the certificate was valid from July 30, 1997 through December 1,

   1997;

   (f) the certificate contains a 1024 bit DSA public key;

   (g) the certificate is an end entity certificate, as the basic

   constraints extension is not present;

   (h) the certificate contains an authority key identifier extension;

   and

   (i) the certificate includes one alternative name - an RFC 822

   address.

 

0000 30 82 02 d6  726: SEQUENCE

0004 30 82 02 96  662: . SEQUENCE

0008 a0 03          3: . . [0]

0010 02 01          1: . . . INTEGER 2

                     : 02

0013 02 01          1: . . INTEGER 18

                     : 12

0016 30 09          9: . . SEQUENCE

0018 06 07          7: . . . OID 1.2.840.10040.4.3: dsa-with-sha

                     : 2a 86 48 ce 38 04 03

0027 30 2a         42: . . SEQUENCE

0029 31 0b         11: . . . SET

0031 30 09          9: . . . . SEQUENCE

0033 06 03          3: . . . . . OID 2.5.4.6: C

                     : 55 04 06

0038 13 02          2: . . . . . PrintableString  'US'

                     : 55 53

0042 31 0c         12: . . . SET

0044 30 0a         10: . . . . SEQUENCE

0046 06 03          3: . . . . . OID 2.5.4.10: O

 

 

 

Housley, et. al.            Standards Track                   [Page 120]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

                     : 55 04 0a

0051 13 03          3: . . . . . PrintableString  'gov'

                     : 67 6f 76

0056 31 0d         13: . . . SET

0058 30 0b         11: . . . . SEQUENCE

0060 06 03          3: . . . . . OID 2.5.4.11: OU

                     : 55 04 0b

0065 13 04          4: . . . . . PrintableString  'nist'

                     : 6e 69 73 74

0071 30 1e         30: . . SEQUENCE

0073 17 0d         13: . . . UTCTime  '970730000000Z'

                     : 39 37 30 37 33 30 30 30 30 30 30 30 5a

0088 17 0d         13: . . . UTCTime  '971201000000Z'

                     : 39 37 31 32 30 31 30 30 30 30 30 30 5a

0103 30 3d         61: . . SEQUENCE

0105 31 0b         11: . . . SET

0107 30 09          9: . . . . SEQUENCE

0109 06 03          3: . . . . . OID 2.5.4.6: C

                     : 55 04 06

0114 13 02          2: . . . . . PrintableString  'US'

                     : 55 53

0118 31 0c         12: . . . SET

0120 30 0a         10: . . . . SEQUENCE

0122 06 03          3: . . . . . OID 2.5.4.10: O

                     : 55 04 0a

0127 13 03          3: . . . . . PrintableString  'gov'

                     : 67 6f 76

0132 31 0d         13: . . . SET

0134 30 0b         11: . . . . SEQUENCE

0136 06 03          3: . . . . . OID 2.5.4.11: OU

                     : 55 04 0b

0141 13 04          4: . . . . . PrintableString  'nist'

                     : 6e 69 73 74

0147 31 11         17: . . . SET

0149 30 0f         15: . . . . SEQUENCE

0151 06 03          3: . . . . . OID 2.5.4.3: CN

                     : 55 04 03

0156 13 08          8: . . . . . PrintableString  'Tim Polk'

                     : 54 69 6d 20 50 6f 6c 6b

0166 30 82 01 b4  436: . . SEQUENCE

0170 30 82 01 29  297: . . . SEQUENCE

0174 06 07          7: . . . . OID 1.2.840.10040.4.1: dsa

                     : 2a 86 48 ce 38 04 01

0183 30 82 01 1c  284: . . . . SEQUENCE

0187 02 81 80     128: . . . . . INTEGER

                     : d4 38 02 c5 35 7b d5 0b a1 7e 5d 72 59 63 55 d3

                     : 45 56 ea e2 25 1a 6b c5 a4 ab aa 0b d4 62 b4 d2

                     : 21 b1 95 a2 c6 01 c9 c3 fa 01 6f 79 86 83 3d 03

 

 

 

Housley, et. al.            Standards Track                   [Page 121]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

                     : 61 e1 f1 92 ac bc 03 4e 89 a3 c9 53 4a f7 e2 a6

                     : 48 cf 42 1e 21 b1 5c 2b 3a 7f ba be 6b 5a f7 0a

                     : 26 d8 8e 1b eb ec bf 1e 5a 3f 45 c0 bd 31 23 be

                     : 69 71 a7 c2 90 fe a5 d6 80 b5 24 dc 44 9c eb 4d

                     : f9 da f0 c8 e8 a2 4c 99 07 5c 8e 35 2b 7d 57 8d

0318 02 14         20: . . . . . INTEGER

                     : a7 83 9b f3 bd 2c 20 07 fc 4c e7 e8 9f f3 39 83

                     : 51 0d dc dd

0340 02 81 80     128: . . . . . INTEGER

                     : 0e 3b 46 31 8a 0a 58 86 40 84 e3 a1 22 0d 88 ca

                     : 90 88 57 64 9f 01 21 e0 15 05 94 24 82 e2 10 90

                     : d9 e1 4e 10 5c e7 54 6b d4 0c 2b 1b 59 0a a0 b5

                     : a1 7d b5 07 e3 65 7c ea 90 d8 8e 30 42 e4 85 bb

                     : ac fa 4e 76 4b 78 0e df 6c e5 a6 e1 bd 59 77 7d

                     : a6 97 59 c5 29 a7 b3 3f 95 3e 9d f1 59 2d f7 42

                     : 87 62 3f f1 b8 6f c7 3d 4b b8 8d 74 c4 ca 44 90

                     : cf 67 db de 14 60 97 4a d1 f7 6d 9e 09 94 c4 0d

0471 03 81 84     132: . . . BIT STRING  (0 unused bits)

                     : 02 81 80 a8 63 b1 60 70 94 7e 0b 86 08 93 0c 0d

                     : 08 12 4a 58 a9 af 9a 09 38 54 3b 46 82 fb 85 0d

                     : 18 8b 2a 77 f7 58 e8 f0 1d d2 18 df fe e7 e9 35

                     : c8 a6 1a db 8d 3d 3d f8 73 14 a9 0b 39 c7 95 f6

                     : 52 7d 2d 13 8c ae 03 29 3c 4e 8c b0 26 18 b6 d8

                     : 11 1f d4 12 0c 13 ce 3f f1 c7 05 4e df e1 fc 44

                     : fd 25 34 19 4a 81 0d dd 98 42 ac d3 b6 91 0c 7f

                     : 16 72 a3 a0 8a d7 01 7f fb 9c 93 e8 99 92 c8 42

                     : 47 c6 43

0606 a3 3e         62: . . [3]

0608 30 3c         60: . . . SEQUENCE

0610 30 19         25: . . . . SEQUENCE

0612 06 03          3: . . . . . OID 2.5.29.17: subjectAltName

                     : 55 1d 11

0617 04 12         18: . . . . . OCTET STRING

                     : 30 10 81 0e 77 70 6f 6c 6b 40 6e 69 73 74 2e 67

                     : 6f 76

0637 30 1f         31: . . . . SEQUENCE

0639 06 03          3: . . . . . OID 2.5.29.35: subjectAltName

                     : 55 1d 23

0644 04 18         24: . . . . . OCTET STRING

                     : 30 16 80 14 e7 26 c5 54 cd 5b a3 6f 35 68 95 aa

                     : d5 ff 1c 21 e4 22 75 d6

0670 30 09          9: . SEQUENCE

0672 06 07          7: . . OID 1.2.840.10040.4.3: dsa-with-sha

                     : 2a 86 48 ce 38 04 03

0681 03 2f         47: . BIT STRING  (0 unused bits)

                     : 30 2c 02 14 3c 02 e0 ab d9 5d 05 77 75 15 71 58

                     : 92 29 48 c4 1c 54 df fc 02 14 5b da 53 98 7f c5

                     : 33 df c6 09 b2 7a e3 6f 97 70 1e 14 ed 94

 

 

 

Housley, et. al.            Standards Track                   [Page 122]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

D.3 End-Entity Certificate Using RSA

 

   This section contains an annotated hex dump of a 675 byte version 3

   certificate.  The certificate contains the following information:

   (a) the serial number is 256;

   (b) the certificate is signed with RSA and the MD2 hash algorithm;

   (c) the issuer's distinguished name is OU=Dept. Arquitectura de

   Computadors; O=Universitat Politecnica de Catalunya; C=ES

   (d) and the subject's distinguished name is CN=Francisco Jordan;

   OU=Dept. Arquitectura de Computadors; O=Universitat Politecnica de

   Catalunya; C=ES

   (e) the certificate was issued on May 21, 1996 and expired on May 21,

   1997;

   (f) the certificate contains a 768 bit RSA public key;

   (g) the certificate is an end entity certificate (not a CA

   certificate);

   (h) the certificate includes an alternative subject name and an

   alternative issuer name - bothe are URLs;

   (i) the certificate include an authority key identifier and

   certificate policies extensions; and

   (j) the certificate includes a critical key usage extension

   specifying the public is intended for generation of digital

   signatures.

 

0000 30 80           : SEQUENCE   (size undefined)

0002 30 82 02 40  576: . SEQUENCE

0006 a0 03          3: . . [0]

0008 02 01          1: . . . INTEGER 2

                     : 02

0011 02 02          2: . . INTEGER 256

                     : 01 00

0015 30 0d         13: . . SEQUENCE

0017 06 09          9: . . . OID 1.2.840.113549.1.1.2:

                                       MD2WithRSAEncryption

                     : 2a 86 48 86 f7 0d 01 01 02

0028 05 00          0: . . . NULL

0030 30 68         88: . . SEQUENCE

0032 31 0b         11: . . . SET

0034 30 09          9: . . . . SEQUENCE

0036 06 03          3: . . . . . OID 2.5.4.6: C

                     : 55 04 06

0041 13 02          2: . . . . . PrintableString  'ES'

                     : 45 53

0045 31 2d         45: . . . SET

0047 30 2b         43: . . . . SEQUENCE

0049 06 03          3: . . . . . OID 2.5.4.10: O

                     : 55 04 0a

0054 13 24         36: . . . . . PrintableString

 

 

 

Housley, et. al.            Standards Track                   [Page 123]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

                     'Universitat Politecnica de Catalunya'

                     : 55 6e 69 76 65 72 73 69 74 61 74 20 50 6f 6c 69

                     : 74 65 63 6e 69 63 61 20 64 65 20 43 61 74 61 6c

                     : 75 6e 79 61

0092 31 2a         42: . . . SET

0094 30 28         40: . . . . SEQUENCE

0096 06 03          3: . . . . . OID 2.5.4.11: OU

                     : 55 04 0b

0101 13 21         33: . . . . . PrintableString

                     'OU=Dept. Arquitectura de Computadors'

                     : 44 65 70 74 2e 20 41 72 71 75 69 74 65 63 74 75

                     : 72 61 20 64 65 20 43 6f 6d 70 75 74 61 64 6f 72

                     : 73

0136 30 1e         30: . . SEQUENCE

0138 17 0d         13: . . . UTCTime  '960521095826Z'

                     : 39 36 30 37 32 32 31 37 33 38 30 32 5a

0153 17 0d         13: . . . UTCTime  '979521095826Z'

                     : 39 37 30 37 32 32 31 37 33 38 30 32 5a

0168 30 81 83     112: . . SEQUENCE

0171 31 0b         11: . . . SET

0173 30 09          9: . . . . SEQUENCE

0175 06 03          3: . . . . . OID 2.5.4.6: C

                     : 55 04 06

0180 13 02          2: . . . . . PrintableString  'ES'

                     : 45 53

0184 31 2d         12: . . . SET

0186 30 2b         16: . . . . SEQUENCE

0188 06 03          3: . . . . . OID 2.5.4.10: O

                     : 55 04 0a

0193 13 24         36: . . . . . PrintableString

                     'Universitat Politecnica de Catalunya'

                     : 55 6e 69 76 65 72 73 69 74 61 74 20 50 6f 6c 69

                     : 74 65 63 6e 69 63 61 20 64 65 20 43 61 74 61 6c

                     : 75 6e 79 61

0231 31 2a         42: . . . SET

0233 30 28         40: . . . . SEQUENCE

0235 06 03          3: . . . . . OID 2.5.4.11: OU

                     : 55 04 0b

0240 13 21         33: . . . . . PrintableString

                     'Dept. Arquitectura de Computadors'

                     : 44 65 70 74 2e 20 41 72 71 75 69 74 65 63 74 75

                     : 72 61 20 64 65 20 43 6f 6d 70 75 74 61 64 6f 72

                     : 73

0275 31 19         22: . . . SET

0277 30 17         20: . . . . SEQUENCE

0279 06 03          3: . . . . . OID 2.5.4.3: CN

                     : 55 04 03

0284 13 10         16: . . . . . PrintableString 'Francisco Jordan'

 

 

 

Housley, et. al.            Standards Track                   [Page 124]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

                     : 46 72 61 6e 63 69 73 63 6f 20 4a 6f 72 64 61 6e

0302 30 7c          2: . . SEQUENCE

0304 30 0d         13: . . . SEQUENCE

0306 06 09          9: . . . . OID 1.2.840.113549.1.1.1: RSAEncryption

                     : 2a 86 48 86 f7 0d 01 01 01

0317 05 00          0: . . . . NULL

0319 03 6b        107: . . . BIT STRING

                     : 00   (0 unused bits)

                     : 30 68 02 61 00 be aa 8b 77 54 a3 af ca 77 9f 2f

                     : b0 cf 43 88 ff a6 6d 79 55 5b 61 8c 68 ec 48 1e

                     : 8a 86 38 a4 fe 19 b8 62 17 1d 9d 0f 47 2c ff 63

                     : 8f 29 91 04 d1 52 bc 7f 67 b6 b2 8f 74 55 c1 33

                     : 21 6c 8f ab 01 95 24 c8 b2 73 93 9d 22 61 50 a9

                     : 35 fb 9d 57 50 32 ef 56 52 50 93 ab b1 88 94 78

                     : 56 15 c6 1c 8b 02 03 01 00 01

0428 a3 81 97     151: . . [3]

0431 30 3c         60: . . . SEQUENCE

0433 30 1f         31: . . . . SEQUENCE

0435 06 03          3: . . . . . OID 2.5.29.35: authorityKeyIdentifier

                     : 55 1d 23

0440 04 14         22: . . . . . OCTET STRING

                     : 30 12 80 10 0e 6b 3a bf 04 ea 04 c3 0e 6b 3a bf

                     : 04 ea 04 c3

0464 30 19         25: . . . . SEQUENCE

0466 06 03          3: . . . . . OID 2.5.29.15: keyUsage

                     : 55 1d 0f

0471 01 01          1: . . . . . TRUE

0474 04 04          4: . . . . . OCTET STRING

                     : 03 02 07 80

0480 30 19         25: . . . . SEQUENCE

0482 06 03          3: . . . . . OID 2.5.29.32: certificatePolicies

                     : 55 1d 20

0487 04 21         33: . . . . . OCTET STRING

                     : 30 1f 30 1d 06 04 2a 84 80 00 30 15 30 07 06 05

                     : 2a 84 80 00 01 30 0a 06 05 2a 84 80 00 02 02 01

                     : 0a

0522 30 1c         28: . . . . SEQUENCE

0524 06 03          3: . . . . . OID 2.5.29.17: subjectAltName

                     : 55 1d 11

0529 04 15         21: . . . . . OCTET STRING

                     : 30 13 86 11 68 74 74 70 3a 2f 2f 61 63 2e 75 70

                     : 63 2e 65 73 2f

0552 30 19         25: . . . . SEQUENCE

0554 06 03          3: . . . . . OID 2.5.29.18: issuerAltName

                     : 55 1d 12

0559 04 12         18: . . . . . OCTET STRING

                     : 30 14 86 12 68 74 74 70 3a 2f 2f 77 77 77 2e 75

                     : 70 63 2e 65

 

 

 

Housley, et. al.            Standards Track                   [Page 125]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

0579 30 80           : . SEQUENCE (indefinite length)

0581 06 07          7: . . OID

0583 05 00          0: . . NULL

0585 00 00          0: . . end of contents marker

0587 03 81 81      47: . BIT STRING

                     : 00      (0 unused bits)

                     : 5c 01 bd b5 41 88 87 7a 0e d3 0e 6b 3a bf 04 ea

                     : 04 cb 5f 61 72 3c a3 bd 78 f5 66 17 fe 37 3a ab

                     : eb 67 bf b7 da a8 38 f6 33 15 71 75 2f b9 8c 91

                     : a0 e4 87 ba 4b 43 a0 22 8f d3 a9 86 43 89 e6 50

                     : 5c 01 bd b5 41 88 87 7a 0e d3 0e 6b 3a bf 04 ea

                     : 04 cb 5f 61 72 3c a3 bd 78 f5 66 17 fe 37 3a ab

                     : eb 67 bf b7 da a8 38 f6 33 15 71 75 2f b9 8c 91

                     : a0 e4 87 ba 4b 43 a0 22 8f d3 a9 86 43 89 e6 50

0637 00 00          0: . . end of contents marker

 

D.4 Certificate Revocation List

 

   This section contains an annotated hex dump of a version 2 CRL with

   one extension (cRLNumber). The CRL was issued by OU=nist;O=gov;C=us

   on July 7, 1996; the next scheduled issuance was August 7, 1996.  The

   CRL includes one revoked certificates: serial number 18 (12 hex).

   The CRL itself is number 18, and it was signed with DSA and SHA-1.

 

0000 30 81 ba     186: SEQUENCE

0003 30 7c        124: . SEQUENCE

0005 02 01          1: . . INTEGER 1

                     : 01

0008 30 09          9: . . SEQUENCE

0010 06 07          7: . . . OID 1.2.840.10040.4.3: dsa-with-sha

                     : 2a 86 48 ce 38 04 03

0019 30 2a         42: . . SEQUENCE

0021 31 0b         11: . . . SET

0023 30 09          9: . . . . SEQUENCE

0025 06 03          3: . . . . . OID 2.5.4.6: C

                     : 55 04 06

0030 13 02          2: . . . . . PrintableString  'US'

                     : 55 53

0034 31 0c         12: . . . SET

0036 30 0a         10: . . . . SEQUENCE

0038 06 03          3: . . . . . OID 2.5.4.10: O

                     : 55 04 0a

0043 13 03          3: . . . . . PrintableString  'gov'

                     : 67 6f 76

0048 31 0d         13: . . . SET

0050 30 0b         11: . . . . SEQUENCE

0052 06 03          3: . . . . . OID 2.5.4.11: OU

                     : 55 04 0b

 

 

 

Housley, et. al.            Standards Track                   [Page 126]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

0057 13 04          4: . . . . . PrintableString  'nist'

                     : 6e 69 73 74

0063 17 0d         13: . . UTCTime  '970801000000Z'

                     : 39 37 30 38 30 31 30 30 30 30 30 30 5a

0078 17 0d         13: . . UTCTime  '970808000000Z'

                     : 39 37 30 38 30 38 30 30 30 30 30 30 5a

0093 30 22         34: . . SEQUENCE

0095 30 20         32: . . . SEQUENCE

0097 02 01          1: . . . . INTEGER 18

                     : 12

0100 17 0d         13: . . . . UTCTime  '970731000000Z'

                     : 39 37 30 37 33 31 30 30 30 30 30 30 5a

0115 30 0c         12: . . . . SEQUENCE

0117 30 0a         10: . . . . . SEQUENCE

0119 06 03          3: . . . . . . OID 2.5.29.21: reasonCode

                     : 55 1d 15

0124 04 03          3: . . . . . . OCTET STRING

                     : 0a 01 01

0129 30 09          9: . SEQUENCE

0131 06 07          7: . . OID 1.2.840.10040.4.3: dsa-with-sha

                     : 2a 86 48 ce 38 04 03

0140 03 2f         47: . BIT STRING  (0 unused bits)

                     : 30 2c 02 14 9e d8 6b c1 7d c2 c4 02 f5 17 84 f9

                     : 9f 46 7a ca cf b7 05 8a 02 14 9e 43 39 85 dc ea

                     : 14 13 72 93 54 5d 44 44 e5 05 fe 73 9a b2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Housley, et. al.            Standards Track                   [Page 127]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

Appendix E. Authors' Addresses

 

   Russell Housley

   SPYRUS

   381 Elden Street

   Suite 1120

   Herndon, VA 20170

   USA

 

   EMail: housley@spyrus.com

 

 

   Warwick Ford

   VeriSign, Inc.

   One Alewife Center

   Cambridge, MA 02140

   USA

 

   EMail: wford@verisign.com

 

 

   Tim Polk

   NIST

   Building 820, Room 426

   Gaithersburg, MD 20899

   USA

 

   EMail: wpolk@nist.gov

 

 

   David Solo

   Citicorp

   666 Fifth Ave, 3rd Floor

   New York, NY 10103

   USA

 

   EMail: david.solo@citicorp.com

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Housley, et. al.            Standards Track                   [Page 128]


 

RFC 2459        Internet X.509 Public Key Infrastructure    January 1999

 

 

Appendix F.  Full Copyright Statement

 

   Copyright (C) The Internet Society (1999).  All Rights Reserved.

 

   This document and translations of it may be copied and furnished to

   others, and derivative works that comment on or otherwise explain it

   or assist in its implementation may be prepared, copied, published

   and distributed, in whole or in part, without restriction of any

   kind, provided that the above copyright notice and this paragraph are

   included on all such copies and derivative works.  However, this

   document itself may not be modified in any way, such as by removing

   the copyright notice or references to the Internet Society or other

   Internet organizations, except as needed for the purpose of

   developing Internet standards in which case the procedures for

   copyrights defined in the Internet Standards process must be

   followed, or as required to translate it into languages other than

   English.

 

   The limited permissions granted above are perpetual and will not be

   revoked by the Internet Society or its successors or assigns.

 

   This document and the information contained herein is provided on an

   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING

   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING

   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION

   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF

   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Housley, et. al.            Standards Track                   [Page 129]